2023 Annual Groundwater Monitoring Report Per EPA CCR Rule (CFR § 257.90-.98)

Asbury Power Plant CCR Impoundment Jasper County, MO

January 2024

Prepared For:

The Empire District Electric Company 602 S. Joplin Avenue Joplin, Missouri 64801

CERTIFICATE OF COMPLIANCE

Annual Groundwater Monitoring Report for Existing CCR Surface Impoundments EPA CCR Rule Section 40 CFR 257.90 (e) Empire District Electric Company – Asbury Power Plant Asbury, Missouri

The following presents the Annual Groundwater Monitoring Report for the Empire District Electric Company's CCR Impoundment at the Asbury Power Plant. This serves as certification that the facility is in compliance with 40 CFR 257.90 (e) of the EPA CCR Rule.

40 CFR 257.90 (e) states:

(e) Annual groundwater monitoring and corrective action report. For existing CCR landfills and existing CCR surface impoundments, no later than January 31, 2018, and annually thereafter, the owner or operator must prepare an annual groundwater monitoring and corrective action report.

CERTIFICATION 257.90 (e)

The undersigned Professional Engineer (P.E.) is familiar with the requirements of 40 CFR Part 257. The above summarizes the status of the Groundwater Monitoring for the Empire District Electric Company's CCR Impoundment at the Asbury Power Plant. I hereby certify that the facility is in compliance with 40 CFR 257.90 (e) and all information has been placed in the Operating Record. Notification of availability of this document should be provided to the State Director as required in section 257.107(h).

Name: Anika Careaga, P.E. Seal:

Snika (aneaga Tonner 29,2024 Signature:

Date:

Registration Number: 2005022085

State: Missouri

TABLE OF CONTENTS

CERTIFICATES OF COMPLIANCE

1.0 INTRODUCTION	1
2.0 BACKGROUND DATA	2
3.0 MAY 2023 SAMPLING EVENT	3
4.0 NOVEMBER 2023 SAMPLING EVENT	5
5.0 FXCUTIVE SUMMARY	7

LIST OF APPENDICES

Appendix A – May 2023 Sampling Event Appendix B – November 2023 Sampling Event

1.0 INTRODUCTION

The EPA Coal Combustion Residual Regulations (40 CFR Part 257) (CCR Rule) require groundwater monitoring of CCR impoundments. This Asbury Power Plant CCR impoundment groundwater monitoring sampling report is in accordance with the EPA CCR Rule.

In accordance with the EPA CCR Rule (§ 257.90-.98) the status of the Groundwater Monitoring was placed on-line October 17, 2017, as required by the EPA CCR rule. Background data of Appendix III and Appendix IV was collected from January 2016 to August 2017. After review of the first semi-annual groundwater sampling event analytical results completed in October 2017, the constituents listed in Appendix IV were eliminated from the overall semi-annual detection monitoring plan in accordance with the EPA CCR Rule.

The Asbury Power Plant was retired on March 1, 2020. Residual fly ash, bottom ash, and other related wastes were placed in the impoundment area until April 1, 2021, as part of the decommissioning activities. On April 1, 2021, a Notification of Intent to Close CCR Surface Impoundment was posted to the facility's website and the State Director (MDNR) was notified. Dewatering of the impoundment was occurring during the first part of 2022. CCR grading, excavation and relocation activities began in June of 2022. Construction Closure of the final cap of the CCR impoundment was completed on January 23, 2023.

On May 16 and 17, 2023, and November 28 and 29, 2023, semi-annual detection monitoring sampling events was conducted per the EPA CCR Rule (§ 257.94). The original nine (9) groundwater-monitoring wells were sampled and analyzed for the EPA Appendix III. In addition, MW-5AR sampling began in May 2023. MW-5AR was installed in April 2023 in response to the Alternative Source Demonstration (ASD) which was completed in April 2021. The ASD was placed in the operating record. The ASD found the statistically significant increase resulted from an error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality instead of a release to groundwater.

The ASD theorized that this SSI was an issue with the location of the well rather than from a release from the facility. This alternative source demonstration confirmed that MW-5A may be impacted by its placement upgradient of a historic dewatering trench and cutoff trench. The ASD proposed a replacement well for MW-5A be installed downgradient of the dewatering trench and cutoff trench system. The new replacement well MW-5AR was installed prior to the May 2023 sampling event and the initial sampling results were compared to the existing MW-5A. Review of initial sampling results indicate that the theory may be correct. Monitoring of both MW-5A and MW-5AR will continue until the eight needed baseline samples are collected for MW-5AR and statistical analysis can begin. Sampling of MW-5A will then cease. Based on the results of the 2023 statistical analysis, the site will continue with detection monitoring for the 2024 sampling events per the EPA CCR Rule (§ 257.94).

The EPA CCR Rule requires the annual groundwater report to be completed by January 31st of the following year. This report serves as the annual groundwater report for the 2023 sampling events that will be completed by January 31, 2024 and posted on-line within 30 days. This report was prepared in general accordance with the EPA CCR Rule for groundwater requirements. These regulations outline groundwater monitoring requirements and data evaluation methods. The Empire District will notify the MDNR "State Director" via e-mail when this document is posted on-line, as required in the CCR rule.

2.0 BACKGROUND DATA

The purpose of the groundwater monitoring plan is to monitor the groundwater quality surrounding the facility and to evaluate potential impacts and/or releases from facility operations. The groundwater monitoring system for the site consists of the following monitoring wells:

- MW-1 Sidegradient (water level only)
- MW-2 Upgradient
- MW-3 Upgradient
- MW-4 Downgradient
- MW-5 Downgradient
- MW-5A Downgradient
- MW-5AR Downgradient (background sampling)
- MW-6 Downgradient
- MW-6A Downgradient
- MW-7 Sidegradient

Background groundwater data was collected from January 2016 to August 2017. After the background data plus the first semi-annual sampling events, a reduced sampling frequency replaced the quarterly events to semi-annual events. This lessened sampling frequency will be completed during the months of April/May/June and October/November/December. Statistical analysis for EPA Appendix III began after the first semi-annual sampling event was collected on October 4, 2017. MW-5AR baseline monitoring started in May 2023 and will be completed semi-annually until eight (8) rounds of background sampling data are obtained.

Four more sets of background data were available to add to the background data set for the November 2019 sampling event and then four more sets for the November 2021 sampling event for a total of sixteen (16) background sets for the May 2023 sampling event. Four more sets for the November 2023 sampling event for a total of twenty (20) background sets for the November 2023 sampling event. The analysis of the additional data for the background data set was conducted. No trending was found in the additional four sets of data, so they were added to the baseline data set to increase the statistical power of the background data.

3.0 MAY 2023 SAMPLING EVENT

On May 16 and 17, 2023, a semi-annual sampling event was conducted per the EPA CCR Rule (§ 257.90-.98). The original nine (9) groundwater-monitoring wells were sampled and analyzed for the EPA Appendix III. In addition, MW-5AR was also sampled for Appendix III and Appendix IV parameters. For quality assurance and quality control measures, a duplicate sample at MW-5 was taken.

	Table 1 – Constituents During May 2023 Sampling Event											
Constituent	Units	MCL	MW-2 (up)	MW-3 (up)	MW-4 (down)	MW-5 (down)	MW-5A (down)	MW-5AR (down)	MW-6 (down)	MW-6A (down)	MW-7 (side)	
Appendix III												
Boron	mg/L	NA	150	80	<80	250	1800	370	350	350	290	
Calcium	mg/L	NA	28	94	240	91	400	77	250	180	470	
Chloride	mg/L	NA	110	59	6.5	6.2	180	77	19	37	38	
Fluoride	mg/L	4.0	0.2	0.16	0.11	0.3	0.26	0.51	0.29	0.27	0.17	
pН	SU	NA	5.93	5.82	6.88	7.43	6.94	7.46	7.02	6.85	6.51	
Sulfate	mg/L	NA	98	490	560	150	1700	190	950	830	1600	
Total Dissolved Solids	mg/L	NA	410	890	1500	590	3200	650	1900	1600	2900	

NA = Not Applicable

<x = Less than reporting limit (nondetectable)</pre>

J = Trace value seen above minimum detection limit but below reporting limit (trace)

No constituents were detected above the Federal Safe Drinking Water maximum contaminant level (MCL) during the sampling event. There was one initial interwell prediction limit exceedance for Total Dissolved Solids (MW-5A) in the listed monitoring well during May 2023 sampling event. During the May 2023 sampling event, interwell prediction exceedances in boron (MW-5A) and pH (MW-5) were confirmed. There are no current primary (health based) MCLs for pH, but the confirmed pH results are still within the acceptable range of 6.5 to 9 SU. The facility was resampled as part of the November 2023 sampling event. **Appendix A** contains the complete report for the May 2023 sampling event.

The results of the interwell prediction limit statistical analysis of the November 2020, May 2021, November 2021, May 2022 and November 2022 sampling events indicate a confirmed exceedance for Boron (MW-5A). EPA CCR Rule 40 CFR § 257.94(e)(2) allows an Alternative Source Demonstration (ASD) that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality for a constituent found in a monitoring well. This ASD was completed in April 2021 and placed in the operating record. The ASD found the statistically significant increase resulted from an error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality instead of a release to groundwater.

The ASD theorized that this SSI was an issue with the location of the well rather than from a release from the facility. This alternative source demonstration confirmed that MW-5A may be impacted by its placement upgradient of a historic dewatering trench and cutoff trench. The ASD proposed a replacement well for MW-5A be installed downgradient of the dewatering trench and cutoff trench system. The new replacement well MW-5AR was installed prior to the May 2023 sampling event and the initial sampling results were compared to the existing MW-5A. Review of initial sampling results indicate that the theory may be correct. Monitoring of both MW-5A and

MW-5AR will continue until the eight needed baseline samples are collected for MW-5AR and statistical analysis can begin. Sampling of MW-5A will then cease.

Based upon these findings the site will not need to move into the assessment monitoring program at this time and will continue with the detection monitoring program per the EPA CCR Rule (§ 257.94) on a semi-annual basis.

In April 2023, monitoring well MW-5AR was installed as proposed in the Alternative Source Demonstration completed April 2021. As part of this well installation maintenance of the entire groundwater monitoring well system was also completed. This included the installation of new concrete well pads, protective covers, and protective bollards. The well riser pipe was also modified for well cap installation. New as-built survey data was obtained and will be utilized in this and future reports. MW-5A will not be removed until after the eight (8) background samples have been collected for MW-5AR.

4.0 NOVEMBER 2023 SAMPLING EVENT

On November 28 and 29, 2023, a semi-annual detection monitoring sampling event was conducted per the EPA CCR Rule (§ 257.94). The original nine (9) groundwater-monitoring wells were sampled and analyzed for the EPA Appendix III. In addition, MW-5AR was also sampled for Appendix III and Appendix IV parameters. For quality assurance and quality control measures, a duplicate sample at MW-5 was taken.

	Table 2 – Constituents During November 2023 Sampling Event											
Constituent	Units	MCL	MW-2 (up)	MW-3 (up)	MW-4 (down)	MW-5 (down)	MW-5A (down)	MW-5AR (down)	MW-6 (down)	MW-6A (down)	MW-7 (side)	
Appendix III												
Boron	mg/L	NA	110	52	<50J	300	2400	400	400	360	300	
Calcium	mg/L	NA	26	93	260	93	430	120	270	240	490	
Chloride	mg/L	NA	150	57	4.6	6	230	28	30	86	44	
Fluoride	mg/L	4.0	<1J	<1J	<1	<1J	<1	<1J	<1J	<1	<1	
рН	SU	NA	5.76	5.77	6.65	7.16	6.59	7.31	6.79	6.33	6.18	
Sulfate	mg/L	NA	96	480	630	170	1400	370	1100	1100	2000	
Total Dissolved Solids	mg/L	NA	380	850	1500	590	3300	920	1900	2000	2800	

NA = Not Applicable

<x = Less than reporting limit (nondetectable)</pre>

J = Trace value seen above minimum detection limit but below reporting limit (trace)

No constituents were detected above the Federal Safe Drinking Water maximum contaminant level (MCL) during the sampling event. There was one initial interwell prediction limit exceedance for chloride (MW-5A) in the listed monitoring well during November 2023 sampling event. During the November 2023 sampling event, interwell prediction exceedances in boron (MW-5A) and total dissolved solids (MW-5A) were confirmed from the May 2023 sampling event. There are no current primary (health based) MCLs for boron or total dissolved solids. The facility will resample as part of the May 2024 sampling event. **Appendix B** contains the full report for the November 2023 sampling event.

It was noted during sampling that water levels were significantly lower than normally seen due to drought conditions. The drought should be considered excessive. Governor Mike Parson declared at state of emergency in Missouri for drought conditions starting on July 21, 2022. **Table 3** shows the drop in elevation between the May 2022 and November 2023 sampling events.

Table 3 - Groundwater Sampling Comparison									
WELL ID	NOVEMBE STATIC WAT (ft-BT)	ER LEVEL	PRE-DROUG STATIC W (ft-	DIFFERENCE IN INTIAL LEVELS (ft-BTOC)					
	Initial	Final	Initial	Final	(п-втос)				
MW-1*	8.85	NA	5.41	NA	3.44				
MW-2	4.33	6.35	3.07	4.87	1.26				
MW-3	2.87	2.90	0.5	0.7	2.37				
MW-4	9.37	14.48	5.83	12.93	3.54				
MW-5	0.5	9.77	1.82	13.39	-1.32				

MW-5A	9.88	17.57	9.50	19.43	0.38
MW-5AR	1.72	9.68	NA	NA	NA
MW-6	9.99	17.78	8.86	18.07	1.13
MW-6A	9.17	16.89	7.93	18.20	1.24
MW-7	6.15	7.80	3.15	3.32	3.00

The results of the interwell prediction limit statistical analysis of the November 2020, May 2021, November 2021, May 2022, November 2022, and May 2023 sampling events indicate a confirmed exceedance for Boron (MW-5A). EPA CCR Rule 40 CFR § 257.94(e)(2) allows an Alternative Source Demonstration (ASD) that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality for a constituent found in a monitoring well. This ASD was completed in April 2021 and placed in the operating record. The ASD found the statistically significant increase resulted from an error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality instead of a release to groundwater.

The ASD theorized that this SSI was an issue with the location of the well rather than from a release from the facility. This alternative source demonstration confirmed that MW-5A may be impacted by its placement upgradient of a historic dewatering trench and cutoff trench. The ASD proposed a replacement well for MW-5A be installed downgradient of the dewatering trench and cutoff trench system. The new replacement well MW-5AR was installed prior to the May 2023 sampling event and the initial sampling results were compared to the existing MW-5A. Review of initial sampling results indicate that the theory may be correct. Monitoring of both MW-5A and MW-5AR will continue until the eight needed baseline samples are collected for MW-5AR and statistical analysis can begin. Sampling of MW-5A will then cease.

Based upon these findings the site will not need to move into the assessment monitoring program at this time and will continue with the detection monitoring program per the EPA CCR Rule (§ 257.94) on a semi-annual basis.

5.0 EXCUTIVE SUMMARY

This report is a summary of the 2023 sampling events and the findings of the statistical analysis of the results of the groundwater detection monitoring program at the Asbury Power Plant CCR Impoundment. Specific information about each sampling event can be obtained from the individual reports which are included as appendices and have been placed in the Asbury Operating Record. Statistical analysis will continue utilizing interwell prediction limits per EPA's request. The site continues with the detection monitoring program on a semi-annual basis per the EPA CCR Rule (§ 257.94).

APPENDIX A

May 2023 Sampling Event

Groundwater Monitoring, Sampling & Statistics Per EPA CCR Rule (CFR § 257.90-.98)

May 2023 Sampling Event

Asbury Power Plant CCR Impoundment Jasper County, MO

August 2023

Prepared For:

The Empire District Electric Company 602 S. Joplin Avenue Joplin, Missouri 64801

TABLE OF CONTENTS

1.0 INTRODUCTION	1
2.0 SITE LOCATION 2.1 History 2.2 Site Geology 2.3 Groundwater Monitoring Network Design 2.4 Groundwater Monitoring Network 2.5 Seasonal Variation 2.6 Groundwater Flow Direction	3 3 4 5 5 5
3.0 BASELINE GROUNDWATER DATA 3.1 Baseline Data Collection 3.2 Background Data Analysis	6 6
4.0 GROUNDWATER SAMPLING EVENT	8
5.0 DATA VALIDATION PROCEDURES FOR GROUNDWATER MONITORING DATA	9
5.1 Precision 5.2 Accuracy 5.3 Representativeness 5.4 Comparability 5.5 Completeness	9 9 9 9 10
6.0 STATISTICAL ANALYSIS 6.1 Sampling Results 6.2 Statistical Analysis 6.3 Results Interpretation 6.4 Proposed Actions	11 11 11 13 19

LIST OF FIGURES

Figure 1 – Site Location

Figure 2 – Monitoring Well Location

Figure 3 – Potentiometric Map

LIST OF APPENDICES

Appendix 1 – EPA/MDNR Correspondence

Appendix 2 – Baseline Sampling Information

Appendix 3 – Monitoring Well Field Inspection Sheets and Field Notes

Appendix 4 – Analytical Results from Lab

Appendix 5 – Statistical Analysis

1.0 INTRODUCTION

The EPA Coal Combustion Residual Regulations (40 CFR Part 257) (CCR Rule) require groundwater monitoring of CCR impoundments. This Asbury Power Plant CCR impoundment groundwater monitoring sampling report is in accordance with the EPA CCR Rule. In accordance with the EPA CCR Rule (§ 257.90-.98) the status of the Groundwater Monitoring was placed on-line October 17, 2017, as required by the EPA CCR rule. Empire notified the Missouri Department of Natural Resources (MDNR) "State Director" via e-mail when this document was posted on-line, as required in the CCR rule.

The EPA CCR Rule requires the annual groundwater report to be prepared by January 31st of the following year. The first report was due January 31, 2018. This report was prepared in general accordance with the EPA CCR Rule for groundwater requirements. These regulations outline groundwater monitoring requirements and data evaluation methods. The annual groundwater report for the 2023 sampling events will be posted on-line within 30 days of placement in the operating record and the State Director will be notified.

A Site Characterization Workplan was submitted to the MDNR. On November 2, 2017, the facility received approval from MDNR that the site had been properly characterized and the facility could begin groundwater monitoring (included in **Appendix 1**).

The purpose of the groundwater monitoring system is to monitor the ground water quality surrounding the facility and to evaluate potential impacts and/or releases from facility operations. Eight rounds of background groundwater data were collected from January 2016 to August 2017. After the background data is obtained and after the first semi-annual sampling event, a reduced sampling frequency replaced the quarterly events to semi-annual events. This reduced sampling frequency will generally be completed during the months of May and November. Statistical analysis for EPA Appendix III results began after the first semi-annual sampling event which was collected on October 4, 2017. This analysis was to determine if a statistically significant increase (SSI) has occurred. If an SSI is verified, additional evaluation is required to determine if the SSI was caused by the CCR impoundment.

The Asbury Power Plant was retired on March 1, 2020. Residual fly ash, bottom ash, and other related wastes were placed in the impoundment area until April 1, 2021, as part of the decommissioning activities. On April 1, 2021, a Notification of Intent to Close CCR Surface Impoundment was posted to the facility's website and the State Director (MDNR) was notified. Dewatering of the impoundment was occurring during the first part of 2022. CCR grading, excavation and relocation activities began in June of 2022. Closure of the CCR impoundment was completed on January 23, 2023.

On May 16 and 17, 2023, a semi-annual sampling event was conducted per the EPA CCR Rule (§ 257.90-.98). The original nine (9) groundwater-monitoring wells were sampled and analyzed for the EPA Appendix III. In addition, MW-5AR was sampled for the first time. MW-5AR was installed in April 2023 in response to the Alternative Source Demonstration (ASD) which was completed in April 2021. The ASD was placed in the operating record. After review of the first semi-annual groundwater sampling event analytical results completed in October 2017, the constituents listed in Appendix IV were eliminated from the overall semi-annual detection monitoring plan in accordance with the EPA CCR Rule. For quality assurance and quality control measures, a

duplicate sample at MW-5 was taken. These samples were preserved and submitted directly to the laboratory.

This report is a summary of the May 2023 sampling event and the findings of the statistical analysis of the results of the groundwater monitoring program at the Asbury Power Plant CCR Impoundment. Specific information about each sampling event can be obtained from the individual report which is part of the Asbury Operating Record.

2.0 SITE LOCATION

The site occupies the north half of Section 17, Township 30 North, and Range 33 West on the Asbury 7.5-Minute Quadrangle Map as seen in **Figure 1**. The site is located approximately 5.5 miles north-northeast of Asbury, Missouri, about 14 miles north-northwest of Joplin, Missouri. A map showing the locations of the monitoring wells is in **Figure 2**.

2.1 History

In March 1996, five (5) groundwater monitoring wells, MW-1 through MW-5, were installed around the perimeter of the Asbury Power Plant CCR impoundment. Monitoring wells MW-1, MW-2 and MW-3 were installed to a total depth of between 27.0 to 28.5 feet below ground surface (bgs). Monitoring wells MW-4 and MW-5 were installed to a total depth of 48 feet bgs. Each of the five monitoring wells was equipped with 10.0-foot well screens. The five wells were then developed, purged, and sampled in 1996.

In 2003, two (2) additional groundwater monitoring wells were installed and identified as MW-6 and MW-7. Both wells had 2-inch diameter PVC well casings installed to an approximate total depth of 44 feet below ground surface. Both wells were installed with an above ground steel protective cover. No other construction details such as well screen lengths were available for these two (2) wells. In December 2015, two (2) additional groundwater monitoring wells were installed and identified as MW-5A and MW-6A.

In April 2023, monitoring well MW-5AR was installed as proposed in the Alternative Source Demonstration completed April 2021. As part of this well installation maintenance of the entire groundwater monitoring well system was also completed. This included the installation of new concrete well pads, protective covers, and protective bollards. The well riser pipe was also modified for well cap installation. New as-built survey data was obtained and will be utilized in this and future reports. MW-5A will not be removed until after the eight (8) background samples have been collected for MW-5AR.

All wells are registered with MDNR – Missouri Geological Survey Program.

The Asbury Power Plant was retired on March 1, 2020, but residual fly ash, bottom ash, and other related wastes were placed in the impoundment area as part of the decommissioning activities. The facility is now known as the Asbury Renewable Operations Center. On April 1, 2021, a Notification of Intent to Close CCR Surface Impoundment was posted to the facility's website and the State Director (MDNR) was notified. Dewatering of the impoundment was occurring during the first part of 2022. CCR grading, excavation and relocation activities began in June of 2022. Closure of the CCR impoundment was completed on January 23, 2023.

2.2 Site Geology

Drilling and subsurface investigation activities at the Site and as part of the MDNR approved CCR landfill Detailed Site Investigation (DSI) for the adjacent landfill area identified three (3) primary geologic units at the Site. These geologic units include the surficial soil layer, Warner Sandstone (uppermost aquifer), and Riverton Shale (confining unit). The information presented herein includes the primary elements of a site characterization work plan consistent with the MDNR guidance.

<u>Surficial Soil</u>. Soils at the site consist of a surficial unit of cohesive soils (e.g., CL, SC, ML, and CH) underlain by Pennsylvanian-age bedrock. Soil thickness at the Site ranges from approximately 15-25 feet.

Warner Sandstone. The Warner Sandstone (Sandstone) is the uppermost bedrock unit in the south portion of the Site. In the north area of the Site, the Sandstone is overlain by the Riverton Shale (Shale). Based on the DSI information, the Sandstone and Shale can occur as alternating layers. The Sandstone and Shale are gradational in places and transition from shaley sandstone to sandy shale. According to the MDNR publication on the Pennsylvanian Subsystem in Missouri, the Warner Sandstone formation is described as follows: "Generally, the lower part is interbedded, very fine-grained sandstone and claystone. The upper part is largely medium bedded to massive channel fill sandstone. In places, the Warner consists primarily of shale and claystone, with only minor amounts of sandstone" and "ranges in thickness from 0 to 15m (49.2 ft.)."

The Sandstone is more than 25-30 feet thick in places and is generally medium hard and thin to medium bedded with occasional shale partings. The degree of induration of the Sandstone varies and generally increases with depth. Slug tests performed at selected DSI piezometers screened in the Sandstone exhibited hydraulic conductivities ranging from approximately 1.3x10-4 cm/sec to 5.9x10-6 cm/sec. The slug test results are consistent with values for sandstone and shaley sandstone. The groundwater gradient is towards the east and Blackberry Creek.

<u>Riverton Shale</u>. Layers of the Riverton Shale (Shale) exhibited thicknesses ranging from approximately one foot to more than 10 feet. The Shale is generally dark gray to light gray. The Shale is mainly thin bedded with hardness ranging from soft to hard. Six packer tests were performed during the DSI to assess the hydraulic conductivity of the Shale. The packer test results ranged from approximately 3.2×10^{-6} cm/sec to 4.9×10^{-8} cm/sec. The packer test data indicates that the Shale is an effective confining unit.

According to the MDNR publication on the Pennsylvanian Subsystem in Missouri, the Riverton Shale formation is described as "dark gray to black, fine-grained, relatively brittle shale and contains as many as three coal beds, each of which is underlain by underclay" and "varies in thickness from a featheredge to more than 90 feet".

<u>Unnamed Coal</u>. The Shale includes coal seams in places that range in thickness from a few inches to approximately 1.5 feet. The coal is generally black to dark gray.

2.3 Groundwater Monitoring Network Design

The groundwater monitoring system for the CCR impoundment consists of nine (9) groundwater monitoring wells plus the recently installed MW-5AR. Two (2) wells are considered upgradient. Two (2) wells are considered sidegradient; one well is only monitored for groundwater elevation. The remaining five (5) wells are considered downgradient along with the recently installed MW-5AR.

The groundwater monitoring wells (MWs) at the Asbury Power Plant is equipped with individual dedicated poly tubing to be connected to a peristaltic pump/controller at the surface. Low-flow, micro-purge and sampling techniques and technology are utilized to collect groundwater samples from the subject wells. The groundwater sampling procedures are discussed in further detail below.

2.4 Groundwater Monitoring Network

The locations of the monitoring wells are shown in **Figure 2**. The groundwater monitoring system for the site consists of the following monitoring wells:

- MW-1 Sidegradient (water level only)
- MW-2 Upgradient
- MW-3 Upgradient
- MW-4 Downgradient
- MW-5 Downgradient
- MW-5A Downgradient
- MW-5AR Downgradient (background sampling)
- MW-6 Downgradient
- MW-6A Downgradient
- MW-7 Sidegradient

2.5 Seasonal Variation

Historical groundwater elevation data has been limited. However, adequate lengths of well screen have been utilized during the construction of the wells to accommodate typical seasonal groundwater elevation variations seen in southwest Missouri.

2.6 Groundwater Flow Direction

Historically, the seasonally high potentiometric surface indicated the groundwater flow direction to the east. **Figure 3** is a potentiometric map for this sampling event.

Originally MW-7 was thought to be a downgradient well but review of the potentiometric mapping from the eight background sampling events revealed that the well is a sidegradient well. Therefore, the designation for MW-7 has been changed from a downgradient to a sidegradient well for compliance monitoring.

3.0 BASELINE GROUNDWATER DATA

3.1 Baseline Data Collection

Per EPA CCR Rule § 257.94(b), the site initiated the detection monitoring program in January 2016 to include obtaining a minimum of eight (8) independent samples for each background and downgradient well. The eight (8) independent groundwater samples were obtained and analyzed as required by the CCR Rule per the baseline groundwater monitoring plan. Background groundwater data was collected from January 2016 to August 2017.

Groundwater Monitoring Reports were completed for each sampling event and have been placed in the Operating Record. Summary tables of the results from each event are included in **Appendix 2**. A listing of each event is below:

- January 2016
- March 2016
- May 2016
- August 2016
- October 2016
- March 2017
- June 2017
- August 2017

Initial baseline monitoring was required at all monitoring wells. The sampling frequency was quarterly or more frequently for the first two (2) years. After the background data plus the first semi-annual sampling events, a reduced lower sampling frequency replaced the quarterly events to semi-annual events. This lessened sampling frequency will be completed during the months of April/May/June and October/November/December. MW-5AR baseline monitoring started in May 2023 and will be completed semi-annually until eight (8) rounds of background sampling data are obtained.

The initial two (2) years of baseline and the first semi-annual detection monitoring included parameters listed in Appendix III and Appendix IV of the EPA CCR Rule. The constituents listed in Appendix IV were eliminated from the overall semi-annual detection monitoring plan after review of the first semi-annual groundwater sampling event analytical results in January 2018, according to the EPA CCR Rule. **Appendix 2** contains the list of constituents.

3.2 Background Data Analysis

Sanitas[™] for Groundwater was used to run the statistical analyses with settings used as recommended by the Sanitas[™] training course and user manual. The background data consisted of eight sampling events between January 2016 and August 2017 for both the Appendix III and IV constituents. Eight background events are needed for statistical analysis. An analysis of the Appendix III background data was conducted and is included in **Appendix 5**. Trending was found in Boron (MW-3) and Total Dissolved Solids (MW-3). MW-3 is an up-gradient well. Trending was not removed at that time; otherwise, the site would be below the minimum of eight background samples needed to run statistics.

Four more sets of background data were available to add to the background data set for the November 2019 sampling event and then four more sets for the November 2021 sampling event for a total of sixteen (16) background sets. The analysis of the additional data for the background

data sets was conducted and is included in **Appendix 5**. No trending was found in any of the additional sets of data, so they were added to the baseline data set to increase the statistical power of the background data.

4.0 GROUNDWATER SAMPLING EVENT

On May 16 and 17, 2023, nine (9) groundwater monitoring wells were sampled by Midwest Environmental Consultants (MEC) for the EPA CCR Rule Appendix III parameters. In addition, MW-5AR was also sampled for Appendix III and Appendix IV parameters. For quality assurance and quality control measures, a duplicate sample was taken at MW-5. The sampling protocol and methodology was to be conducted in accordance with the facility's Sampling and Analysis Plan. **Table 1** provides a list of the analytical methods employed by the subcontracted laboratory.

Table 1 – Analytical Methods							
Method Description							
9056A	Anions, Ion Chromatography						
6020A	Metals (ICP/MS)						
SM 2540C	Solids, Total Dissolved (TDS)						
Field Sampling	Field Sampling						

Appendix 3 includes Monitoring Well Field Inspection sheets and field notes. The physical integrity of the wells was good. During sample collection each of the wells was monitored for pump discharge and formation recharge. Initially, a static water level for each well was recorded (Table 2). To ensure sufficient recharge while sampling, static water levels were collected during pumping. Prior to sample collection, field parameters for each well were measured with a flow-through meter. When the field parameters stabilized, samples for analytical testing were collected and placed on ice for hand delivery to the laboratory. At the conclusion of sample collection from each well, a final static water level measurement was obtained. The samples were collected in the appropriately pre-preserved sample containers and placed on ice for delivery.

Table 2 - Groundwater Sampling Field Parameters Summary During May 2023 Sampling Event									
WELL	STATIC WA (ft-B1	roc)	PURGE RATE (mL/min)	STABILIZED pH					
.5	Initial	Final	(μ					
MW-1*	7.11	NA	NA	NA					
MW-2	3.68	6.13	200	5.93					
MW-3	2.06	20.9	200	5.82					
MW-4	8.42	11.88	200	6.88					
MW-5	2.66	11.30	200	7.43					
MW-5A	10.68	18.12	200	6.94					
MW-5AR	4.28	12.04	200	7.46					
MW-6	14.06	21.90	200	7.02					
MW-6A	8.67	16.18	200	6.85					
MW-7	3.82	4.22	200	6.51					

^{*} Water Level Only NA – Not Applicable

Appendix 4 includes the initial analytical results for the sampling event. Included with this analytical report are sample information; chain of custody; wet chemistry data; and volatile data.

5.0 DATA VALIDATION PROCEDURES FOR GROUNDWATER MONITORING DATA

Midwest Environmental Consultants receives Data Packages from the analytical laboratory (Eurofins). The internal quality control/quality assurance case narratives and reported data are then reviewed. Generally, the data validation procedures established by the U.S. Environmental Protection Agency *Contract Laboratory Program Functional Guidelines for Organic Data Review* and *Functional Guidelines for Inorganic Data Review* is followed. These guidelines are used to assign data qualifiers to the data. A formal data validation report for the site is not prepared; however, any significant issues are noted in the groundwater monitoring report.

MEC evaluates the data set for precision, accuracy, representativeness, comparability, and completeness (PARCC).

5.1 Precision

<u>Laboratory Precision</u>. Laboratory quality control procedures to measure precision consist of laboratory control sample (LCS) analysis and analysis of matrix spike/matrix spike duplicates (MS/MSD). These analyses are used to define analytical variability.

<u>Field Precision.</u> Analyses of duplicate samples are used to define the total variability (replicability) of the sampling/analytical system. Field replicates are collected at a rate of one per sampling event.

5.2 Accuracy

Accuracy is determined by calculating the percent recoveries for analyses of surrogate compounds, LCSs, continuing calibration check standards, and matrix spike samples. Acceptable percent recoveries are established for SW-846 and EPA methods. Field and laboratory blank analysis are also used to address measurement bias.

<u>Field Blanks.</u> Field blanks consisted of a trip blank and a field blank. One trip blank per cooler accompanies samples for volatile organic analyses.

<u>Laboratory Blanks.</u> Method blanks, artificial, matrix-less samples, are analyzed to monitor the laboratory analysis system for interferences and contamination from glassware, reagents, etc. Method blanks are taken through the entire sample preparation process. They are included with each batch of extractions or digestion prepared, or with each 20 samples, whichever is more frequent.

5.3 Representativeness

Representativeness expresses the degree to which sample data accurately and precisely reflects site condition. Representativeness of the data is determined by comparing actual sampling procedures to those delineated in the field sampling plan, comparing results from field replicate samples, and reviewing the results of field blanks. Field notes are reviewed as part of our data validation process.

5.4 Comparability

Comparability expresses the confidence with which one data set can be compared to another data set measuring the same property. Comparability is ensured by using established and approved sample collection techniques and analytical methods, consistent basis of analysis, consistent reporting units, and analyzing standard reference materials.

5.5 Completeness

Completeness is a measure of the amount of valid data obtained from a measurement system compared to the amount expected under controlled laboratory conditions. Completeness is defined as the valid data percentage of the total tests requested. Valid data are defined as those where the sample arrived at the laboratory intact, properly preserved, in sufficient quantity to perform the requested analyses, and accompanied by a completed chain-of-custody form. Furthermore, the sample must have been analyzed within the specified holding time and in such a manner that analytical QC acceptance criteria were met.

6.0 STATISTICAL ANALYSIS

6.1 Sampling Results

The constituents with results above the laboratory reporting limits are included in **Table 3**. This table also includes the recently installed MW-5AR. The Appendix IV results for MW-5AR are included in **Appendix 2**. The Eurofins laboratory analytical results are included in **Appendix 4**.

	Table 3 – Constituents During May 2023 Sampling Event											
Constituent	Units	MCL	MW-2 (up)	MW-3 (up)	MW-4 (down)	MW-5 (down)	MW-5A (down)	MW-5AR (down)	MW-6 (down)	MW-6A (down)	MW-7 (side)	
Appendix III												
Boron	ug/L	NA	150	80	<80	250	1800	370	350	350	290	
Calcium	mg/L	NA	28	94	240	91	400	77	250	180	470	
Chloride	mg/L	NA	110	59	6.5	6.2	180	77	19	37	38	
Fluoride	mg/L	4.0	0.2	0.16	0.11	0.3	0.26	0.51	0.29	0.27	0.17	
pН	SU	NA	5.93	5.82	6.88	7.43	6.94	7.46	7.02	6.85	6.51	
Sulfate	mg/L	NA	98	490	560	150	1700	190	950	830	1600	
Total Dissolved Solids	mg/L	NA	410	890	1500	590	3200	650	1900	1600	2900	

NA = Not Applicable

<x = Less than reporting limit (nondetectable)</pre>

J = Trace value seen above minimum detection limit but below reporting limit (trace)

No constituents were detected above the Federal Safe Drinking Water maximum contaminant level (MCL) during the sampling event.

6.2 Statistical Analysis

Prediction interval analyses compare one or more observations to a limit set by background data. Interwell analyses compare observations from background wells, which include upgradient and sidegradient wells per EPA Unified Guidance definitions, and their relation to the observations for the downgradient wells. Intrawell analyses compare background observations to current observations of the same well. To appropriately characterize the groundwater beneath the site, the statistical methods utilized at the facility consider the following facts as they relate to site:

- Potential differences in geochemical characteristics of the groundwater caused by the differing lithologies in contact with the screened interval from well to well.
- Potential impacts of surface infiltration into the groundwater environment.

Due to varying geology in the state of Missouri, intrawell analyses had initially been deemed a more appropriate method. Municipal and demolition waste landfills in Missouri typically utilize intrawell prediction limits per MDNR. However, it was noted that the power curve for these analyses was not considered strong yet. The data set consisted of only 13 sampling events from January 2016 to November 2019. EPA Unified Guidance recommends 20 or more sampling events for background data for intrawell prediction limits. A small data set triggers an SSI when there is even a slight increase in concentration. Sanitas also note to each exceedance "Insufficient data to test for seasonality: data were not deseasonalized." Minor increases in concentration noted in the May and November 2019 sampling events did not result in any primary MCLs to be exceeded by any of the prediction limit exceedances during the sampling event, demonstrating that the groundwater has not been contaminated.

The EPA Unified Guidance Chapter 5.2.3 states "In groundwater data collection and testing, background conditions may not be static over time. Caution should be observed in removing observations which may signal a change in natural groundwater quality. Even when conditions have not changed, an apparently extreme measurement may represent nothing more than a portion of the background distribution that has yet to be observed. This is particularly true if the background data set contains fewer than 20 samples." Chapter 5.2.4 states "With such a small background sample, it can be difficult to develop an adequately powerful intrawell prediction level or control chart, even when retesting is employed (Chapter 19). Thus, additional background data will be needed to augment compliance well samples". Minor increases in concentrations did not result in any primary MCLs to be exceeded by any of the prediction limit exceedances during the sampling event, demonstrating that the groundwater has not been contaminated.

MDNR made several requests per EPA in the correspondence located in **Appendix 1** which included the EPA review of the groundwater reports as seen in **Table 4**.

Table 4 – EPA Review of Groundwater Reports								
Facility	Asbury Power Plant							
Location	Asbury, MO							
Owner	Empire District Electric Company							
Units	Upper Pond-unlined, South Pond-unlined, Lower Pond-unlined							
Geology	Surficial unit of clay, clayey sand, and silt approximately 15 to 25 feet thick underlain by Warner Sandstone approximately 25-30 feet thick in the southern portion of the site and the Riverton Shale in the northern area of the site							
Problematic Use of Intra Well Comparisons	Analytical results indicate consistent differences in contaminant concentrations between upgradient and downgradient wells. Consequently, interwell comparisons are feasible and would be preferable in the absence of compelling reasons to use intra well analysis							
Problematic Alternate Source Determination								
Conclusions	While there are no boring logs in the documents to confirm that the wells are screened in the same geologic unit, consistency in the field parameters and the description of the geology suggest that the wells are screened in the sandstone. The analytical results indicate consistent differences in contaminant concentrations between upgradient and downgradient wells, consequently, interwell comparisons are feasible and would be preferable in the absence of compelling reasons to use intra wells analyses							

Sanitas[™] for Groundwater was used to run the statistical analyses with settings used as recommended by the Sanitas[™] training course and user manual. Interwell prediction intervals were run per EPA's request. The Sanitas[™] output is included in **Appendix 5**.

The November 2019 sampling event report indicated confirmed intrawell prediction limits exceedances. Intrawell prediction limits were utilized per the facility's 2018 Groundwater Statistical Analysis Plan. The Annual Report recommending the site move into assessment monitoring was stamped on January 23, 2020, and submitted to the facility. However, in February

MEC received an email from the facility. MDNR had forwarded EPA correspondence requesting that the site change their statistical evaluation method to interwell prediction limits. EPA CCR Rule 40 CFR § 257.94(e)(2) allows at alternative source demonstration to be completed if the statistically significant increases are result of the statistical evaluation rather than from a release from the facility. Appendix 1 contains the MDNR/EPA correspondence.

Statistical analysis was performed on the Appendix III constituents from the sampling event compared to the updated background dataset. Prediction interval analyses compare one or more observations to a limit set by background data. Interwell analyses compare observations from upgradient background wells and their relation to the observations for the downgradient wells. Intrawell analyses compare background observations to current observations of the same well. Due to varying geology in the state of Missouri, intrawell analyses had initially been deemed a more appropriate method. However, EPA has requested the site utilize interwell prediction limits.

Statistical analysis results are presented below for those constituents determined to have exceeded a prediction limit. However, EPA's "Unified Guidance Document: Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities," March 2009, EPA 530/R-09-007 is referenced multiple times in the preamble of the EPA CCR regulations for groundwater sampling and analysis requirements. According to the EPA Unified Guidance, a prediction limit exceedance is not considered a statistically significant increase (SSI) until it is confirmed through retesting. SSIs generated by non-detectable results or with less than eight background events are considered statistically invalid.

Table 5 lists the parameters with exceedances of prediction limits during the sampling event, the associated monitoring wells, if the exceedance is initial versus confirmed, the predicted limit, the measured concentration, and the MCL set forth in the National Drinking Water Regulations. The MCL is the highest level of a contaminant that is allowed in drinking water.

Recently install MW-5AR is still gathering background data and no statistics were completed on this well.

	Table 5 – Interwell Prediction Limit Exceedances Observed									
During May 2023 Sampling Event										
Constituent	Monitoring Well	Initial vs. Confirmed	Predicted Limit	Measured Concentration	Drinking Water MCLs					
Boron (mg/L)	MW-5A	Confirmed	0.9	1.8	NA					
pH* (SU)	MW-5	Confirmed	7.127	7.43	NA					
Total Dissolved Solids (mg/L)	MW-5A	Initial	3100	3200	NA					

NA = Not Applicable

6.3 Results Interpretation

May 2023

There was one initial interwell prediction limit exceedance for Total Dissolved Solids (MW-5A) in the listed monitoring well during May 2023 sampling event. During the May 2023 sampling event, interwell prediction exceedances in boron (MW-5A) and pH (MW-5) were confirmed. There are

^{*}Field Sampled (less precise but within the required hold time)

no current primary (health based) MCLs for pH, but the confirmed pH results are still within the acceptable range of 6.5 to 9 SU. The facility will resample as part of the November 2023 sampling event.

The results of the interwell prediction limit statistical analysis of the November 2020, May 2021, November 2021, May 2022, November 2022, and May 2023 sampling events indicate a confirmed exceedance for Boron (MW-5A). EPA CCR Rule 40 CFR § 257.94(e)(2) allows an Alternative Source Demonstration (ASD) that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality for a constituent found in a monitoring well. This ASD was completed in April 2021 and placed in the operating record. The ASD found the statistically significant increase resulted from an error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality instead of a release to groundwater.

The ASD theorized that this SSI was an issue with the location of the well rather than from a release from the facility. This alternative source demonstration confirmed that MW-5A may be impacted by its placement upgradient of a historic dewatering trench and cutoff trench. The ASD proposed a replacement well for MW-5A be installed downgradient of the dewatering trench and cutoff trench system. The new replacement well MW-5AR was installed prior to the May 2023 sampling event and the initial sampling results were compared to the existing MW-5A. Review of initial sampling results indicate that the theory may be correct. Monitoring of both MW-5A and MW-5AR will continue until the eight needed baseline samples are collected for MW-5AR and statistical analysis can begin. Sampling of MW-5A will then cease.

Based upon these findings the site will not need to move into the assessment monitoring program at this time and will continue with the detection monitoring program per the EPA CCR Rule (§ 257.94) on a semi-annual basis.

As part of this well installation maintenance of the entire groundwater monitoring well system was also completed. This included the installation of new concrete well pads, protective covers, and protective bollards. The well riser pipe was also modified for well cap installation. New asbuilt survey data was obtained and will be utilized in this and future reports.

Below is a discussion of the previous results for comparison.

November 2022

There was no initial interwell prediction limit exceedances for the listed monitoring well during November 2022 sampling event. During the November 2022 sampling event, interwell prediction exceedances in boron (MW-5A) and pH (MW-5) were confirmed. There are no current primary (health based) MCLs for pH, but the confirmed pH results are still within the acceptable range of 6.5 to 9 SU. The facility will resample as part of the May 2023 sampling event. It was noted during sampling that water levels were significantly lower than normally seen due to drought conditions. The drought should be considered excessive. Governor Mike Parson declared at state of emergency in Missouri for drought conditions on July 21, 2022. **Table 6** shows the drop in elevation between the May 2022 and November 2022 sampling events.

Table 6 - Groundwater Sampling Comparison									
WELL ID	STATIC W	BER 2022 ATER LEVEL BTOC)	STATIC W	Y 2022 /ATER LEVEL BTOC)	DIFFERENCE IN INTIAL LEVELS				
	Initial	Final	Initial	Final	(ft-BTOC)				
MW-1*	9.72	NA	5.41	NA	4.31				
MW-2	3.76	6.43	3.07	4.87	0.69				
MW-3	3.57	3.64	0.5	0.7	3.07				
MW-4	8.39	13.98	5.83	12.93	2.56				
MW-5	1.31	11.17	1.82	13.39	-0.51				
MW-5A	11.22	20.88	9.50	19.43	1.72				
MW-6	10.66	19.86	8.86	18.07	1.8				
MW-6A	9.40	18.30	7.93	18.20	1.47				
MW-7	6.42	6.50	3.15	3.32	3.27				

The results of the interwell prediction limit statistical analysis of the November 2020, May 2021, November 2021, May 2022, and November 2022 sampling events indicate a confirmed exceedance for Boron (MW-5A). EPA CCR Rule 40 CFR § 257.94(e)(2) allows an Alternative Source Demonstration (ASD) that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality for a constituent found in a monitoring well. This ASD was completed in April 2021 and placed in the operating record. The ASD found the statistically significant increase resulted from an error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality instead of a release to groundwater. The ASD theorizes that this SSI is an issue with the location of the well rather than from a release from the facility. This alternative source demonstration confirms that MW-5A may be impacted by its placement upgradient of a historic dewatering trench and cutoff trench. The ASD proposes a replacement well for MW-5A be installed downgradient of the dewatering trench and cutoff trench system. The new replacement well will be monitored and compared to the existing MW-5A to determine if the theory is correct. Based upon these findings the site did not need to move into the assessment monitoring program at this time and will continue with the detection monitoring program per the EPA CCR Rule (§ 257.94) on a semi-annual basis.

May 2022

There was no initial interwell prediction limit exceedances for the listed monitoring well during May 2022 sampling event. During the May 2022 sampling event, interwell prediction exceedances in boron (MW-5A) and pH (MW-5, MW-6 and MW-6A) were confirmed. There are no current primary (health based) MCLs for pH, but the confirmed pH results are still within the acceptable range of 6.5 to 9 SU. The facility will resample as part of the November 2022 sampling event. The results of the interwell prediction limit statistical analysis of the November 2020, May 2021, November 2021, and May 2022 sampling events indicate a confirmed exceedance for Boron (MW-5A). EPA CCR Rule 40 CFR § 257.94(e)(2) allows an Alternative Source Demonstration (ASD) that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality for a constituent found in a monitoring well. This ASD was completed in April 2021 and placed in the operating record. The ASD found the statistically significant increase resulted from an error in sampling, analysis, statistical evaluation, or natural

variation in groundwater quality instead of a release to groundwater. The ASD theorizes that this SSI is an issue with the location of the well rather than from a release from the facility. This alternative source demonstration confirms that MW-5A may be impacted by its placement upgradient of a historic dewatering trench and cutoff trench. The ASD proposes a replacement well for MW-5A be installed downgradient of the dewatering trench and cutoff trench system. The new replacement well will be monitored and compared to the existing MW-5A to determine if the theory is correct. Based upon these findings the site did not need to move into the assessment monitoring program at this time and will continue with the detection monitoring program per the EPA CCR Rule (§ 257.94) on a semi-annual basis.

November 2021

There was no initial interwell prediction limit exceedances for the listed monitoring well during November 2021 sampling event. During the November 2021 sampling event, interwell prediction exceedances in boron (MW-5A) and pH (MW-5, MW-6 and MW-6A) were confirmed. There are no current primary (health based) MCLs for pH, but the confirmed pH results are still within the acceptable range of 6.5 to 9 SU. The facility will resample as part of the May 2022 sampling event. The results of the interwell prediction limit statistical analysis of the November 2020, May 2021 and November 2021 sampling events indicate a confirmed exceedance for Boron (MW-5A). EPA CCR Rule 40 CFR § 257.94(e)(2) allows an Alternative Source Demonstration (ASD) that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality for a constituent found in a monitoring well. This ASD was completed in April 2021 and placed in the operating record. The ASD found the statistically significant increase resulted from an error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality instead of a release to groundwater. The ASD theorizes that this SSI is an issue with the location of the well rather than from a release from the facility. This alternative source demonstration confirms that MW-5A may be impacted by its placement upgradient of a historic dewatering trench and cutoff trench. The ASD proposes a replacement well for MW-5A be installed downgradient of the dewatering trench and cutoff trench system. The new replacement well will be monitored and compared to the existing MW-5A to determine if the theory is correct. Based upon these findings the site did not need to move into the assessment monitoring program at this time and will continue with the detection monitoring program per the EPA CCR Rule (§ 257.94) on a semi-annual basis.

May 2021

There was no initial interwell prediction limit exceedances for the listed monitoring well during May 2021 sampling event. During the November 2020 sampling event, Initial interwell prediction exceedances in pH (MW-5, MW-6 and MW-6A) and total dissolved solids (MW-5A) were noted. However, the initial prediction limit exceedance of total dissolved solids (MW-5A) was not confirmed during the May 2020 sampling event. There are no current primary (health based) MCLs for pH, but the confirmed pH results are still within the acceptable range of 6.5 to 9 SU. The facility plans to resample as part of the November 2021 sampling event. The results of the interwell prediction limit statistical analysis of the November 2020 and May 2021 sampling events indicate a confirmed exceedance for Boron (MW-5A). EPA CCR Rule 40 CFR § 257.94(e)(2) allows an Alternative Source Demonstration (ASD) that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality for a constituent found in a monitoring well. This ASD was completed in April 2021 and placed in the operating record. The ASD found the statistically significant increase resulted from an error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality instead of a

release to groundwater. The ASD theorizes that this SSI is an issue with the location of the well rather than from a release from the facility. This alternative source demonstration confirms that MW-5A may be impacted by its placement upgradient of a historic dewatering trench and cutoff trench. The ASD proposes a replacement well for MW-5A be installed downgradient of the dewatering trench and cutoff trench system. The new replacement well will be monitored and compared to the existing MW-5A to determine if the theory is correct. Based upon these findings the site did not need to move into the assessment monitoring program at this time and will continue with the detection monitoring program per the EPA CCR Rule (§ 257.94) on a semi-annual basis.

November 2020

The results of the EPA requested interwell prediction limit statistical analysis of the November 2020 sampling event indicate a confirmed exceedance for Boron (MW-5A). Boron does not have a MCL. The facility will conduct an alternative source demonstration in the next 90 days per the EPA CCR Rule (§ 257.94). The results for pH (MW-5, MW-6 and MW-6A) and total dissolved solids (MW-5A) indicated initial interwell prediction limit exceedances for the listed monitoring well during November 2020 sampling event. There are no current primary (health based) MCLs for pH or total dissolved solids. The facility plans to resample as part of the May 2021 sampling event. During the May 2020 sampling event, Initial interwell prediction exceedances in boron (MW-5A and MW-6A) and fluoride (MW-5A) were noted. However, the initial prediction limit exceedances of boron (MW-6A) and fluoride (MW-5A) were not confirmed during the November 2020 sampling event.

May 2020

The results of the EPA requested interwell prediction limit statistical analysis of the May 2020 sampling event indicate that the site is in compliance. The results for boron (MW-5A and MW-6A) and fluoride (MW-5A) indicated an initial interwell prediction limit exceedance for the listed monitoring well during May 2020 sampling event. There is a current primary (health based) MCL for fluoride of 4.0 mg/L but the result is below the limit. Boron does not have a MCL but does have an EPA proposed groundwater protection standard of 4.0 mg/L but all results were below that limit. Trending was found to be significant for boron (MW-5A) but not significant in boron (MW-6A) and fluoride (MW-5A). Boron is also trending upward in MW-2 which is an up-gradient well. The facility plans to resample as part of the November 2020 sampling event. During the November 2019 sampling event, Initial interwell prediction exceedances in pH (MW-4, MW-5, MW-5A, MW-6 and MW-6A) were noted. However, these initial prediction limit exceedances were not confirmed during the May 2020 sampling event.

November 2019

The result for Chloride (MW-5A), pH (MW-4) and Sulfate (MW-5A) indicated an initial intrawell prediction limit exceedance for the listed monitoring well during the November 2019 sampling event. There is no current primary (health based) MCL for chloride, pH, or sulfate. During May 2019, the result for Boron (MW-5A) indicated an initial intrawell prediction limit exceedance and Total Dissolved Solids (MW-5A) indicated a confirmed intrawell prediction limit exceedance. There is no current primary (health based) MCL for boron and total dissolved solids. These prediction limit exceedances were confirmed during the November 2019 sampling event. A resample of MW-5A was conducted on December 11, 2019. The results of the resampling confirmed the exceedances and the site planned to move into assessment monitoring. However, in February MEC received an email from the facility. MDNR had forwarded EPA correspondence

requesting that the site change their statistical evaluation method to interwell prediction limits. EPA CCR Rule 40 CFR § 257.94(e)(2) allows at alternative source demonstration to be completed if the statistically significant increases are result of the statistical evaluation rather than from a release from the facility. **Appendix 1** contains the MDNR/EPA correspondence. The results of the EPA requested interwell prediction limit statistical analysis of the November 2019 sampling event indicate that the site is in compliance. Initial interwell prediction exceedances in pH (MW-4, MW-5, MW-5A, MW-6 and MW-6A) were noted but have not been confirmed. There is no current primary (health based) Maximum Contamination Level (MCL) for pH. Trending was not found to be significant for pH in any well during the analysis of the background data set.

May 2019

The result for Boron (MW-5A) and pH (MW-3(u), MW-5A, MW-6 and MW-6A) indicated an initial intrawell prediction limit exceedance for the listed monitoring well during the May 2019 sampling event. There is no current primary (health based) MCL boron or pH. The facility plans to resample as part of the November 2019 sampling event. During November 2018, the result for Total Dissolved Solids (MW-5A) indicated an initial intrawell prediction limit exceedance. There is no current primary (health based) MCL for total dissolved solids. This initial prediction limit exceedances were confirmed during the May 2019 sampling event. However, it should be noted that the power curve for these analyses is not considered strong. A small data set triggers an SSI when there is even a slight increase in concentration. The EPA Unified Guidance Chapter 5.2.4 states "With such a small background sample, it can be difficult to develop an adequately powerful intrawell prediction level or control chart, even when retesting is employed (Chapter 19). Thus, additional background data will be needed to augment compliance well samples". Minor increases in concentrations did not result in any primary MCLs to be exceeded by any of the prediction limit exceedances during the sampling event, demonstrating that the groundwater has not been contaminated. It was also noted that higher levels of total dissolved solids were seen in the side-gradient well MW-7 demonstrating that there was likely not a release from the facility. Therefore, the site will continue with detection monitoring on a semi-annual basis at this time.

November 2018

The result for Total Dissolved Solids (MW-5A) indicated an initial intrawell prediction limit exceedance for the listed monitoring well during the November 2018 sampling event. There is no current primary (health based) MCL for total dissolved solids. The facility plans to resample MW-5A for Total Dissolved Solids as part of the May 2019 sampling event. During May 2018, no intrawell prediction limits were exceeded. Therefore, there were no initial prediction limit exceedances to confirm during the November 2018 sampling event.

May 2018

No intrawell prediction limits were exceeded during the May 2018 sampling event. The October 2017 results for Total Dissolved Solids (MW-7) indicated an exceedance of the predicted limit for the listed monitoring wells. However, this initial prediction limit exceedance was not confirmed during the May 2018 sampling event.

October 2017

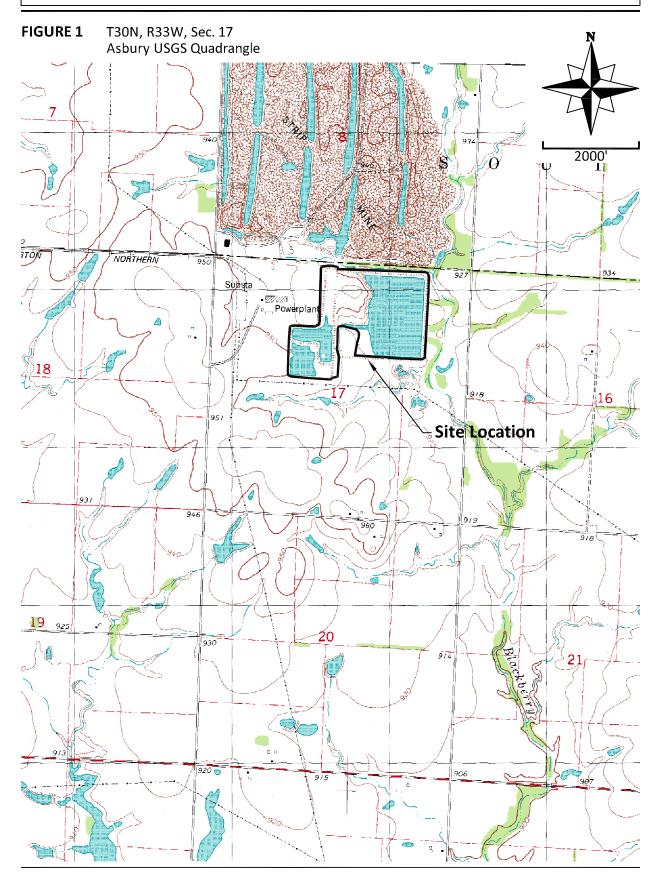
The result for Total Dissolved Solids (MW-7) indicated an initial intrawell prediction limit exceedance for the listed monitoring wells during the October 2017 sampling event. However, the result was below the tolerance limit. There is no current primary (health based) MCL for total dissolved solids. Review of the Total Dissolved Solids in the duplicate sample taken from the same

well (MW-7) shows a result of 3,000 mg/L, which would not be an exceedance of the intrawell prediction limit of 3,069 mg/L. Due to the variances between the sample and the duplicate, the site will re-evaluate MW-7 for Total Dissolved Solids during the next sampling event. MW-7 is considered a sidegradient well, therefore no further action is needed for exceedances in sidegradient or upgradient wells.

6.4 Proposed Actions

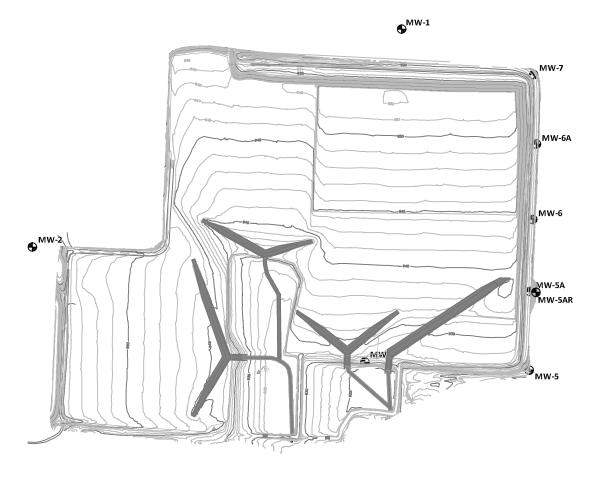
Statistical analysis will continue to be completed with interwell prediction limits per EPA's request. The results of the EPA requested interwell prediction limit statistical analysis of the November 2020, May 2021 and November 2021 sampling events indicate a confirmed exceedance for Boron (MW-5A). EPA CCR Rule 40 CFR § 257.94(e)(2) allows an Alternative Source Demonstration (ASD) that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality for a constituent found in a monitoring well. This ASD was completed in April 2021 and placed in the operating record. The ASD found the statistically significant increase resulted from an error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality instead of a release to groundwater.

The ASD theorized that this SSI was an issue with the location of the well rather than from a release from the facility. This alternative source demonstration confirmed that MW-5A may be impacted by its placement upgradient of a historic dewatering trench and cutoff trench. The ASD proposed a replacement well for MW-5A be installed downgradient of the dewatering trench and cutoff trench system. The new replacement well MW-5AR was installed prior to the May 2023 sampling event and the initial sampling results were compared to the existing MW-5A. Review of initial sampling results indicate that the theory may be correct. Monitoring of both MW-5A and MW-5AR will continue until the eight needed baseline samples are collected for MW-5AR and statistical analysis can begin. Sampling of MW-5A will then cease.


Based upon these findings the site does not need to move into the assessment monitoring program at this time and will continue with the detection monitoring program per the EPA CCR Rule (§ 257.94) on a semi-annual basis.

FIGURES

Asbury Generating Station CCR ImpoundmentGroundwater Sampling Event - May 2023 Site Location Map

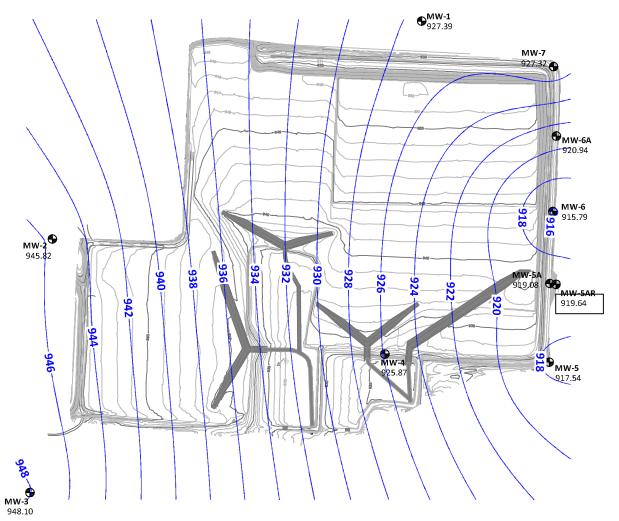


Asbury Generating Station CCR ImpoundmentGroundwater Sampling Event - May 2023
Groundwater Monitoring System

FIGURE 2

Well ID	Northing	Easting	
MW-1	435789.71	2765168.83	
MW-2	434428.56	2762861.43	
MW-3	432844.71	2762721.27	
MW-4	433709.70	2764938.79	
MW-5	433659.19	2765966.39	
MW-5A	434150.39	2765969.77	
MW-5AR	434145.71	2766008.17	
MW-6	434600.94	2765988.47	
MW-6A	435071.72	2766010.58	
MW-7	435505.31	2765993.01	

Legend



Asbury Generating Station CCR Impoundment

Groundwater Sampling Event - May 2023 Groundwater Piezometric Surface Map

FIGURE 3

Well ID	Northing	Easting	Top Of Casing	Static Water Level (BTOC)	Static Water Level
MW-1	435789.71	2765168.83	934.50	7.11	927.39
MW-2	434428.56	2762861.43	949.50	3.68	945.82
MW-3	432844.71	2762721.27	950.16	2.06	948.10
MW-4	433709.70	2764938.76	934.29	8.42	925.87
MW-5	433659.19	2765966.39	920.20	2.66	917.54
MW-5A	434150.39	2765969.77	929.76	10.68	919.08
MW-5AR	434145.71	2766008.17	923.92	4.28	919.64
MW-6	434600.94	2765988.47	929.85	14.06	915.79
MW-6A	435071.72	2766010.58	929.61	8.67	920.94
MW-7	435505.31	2765993.01	931.14	3.82	927.32

Legend

Monitoring Well

APPENDIX 1

EPA/MDNR Correspondence

Missouri Department of

dnr.mo.gov

NATURAL RESOURCES

Eric R. Greitens, Governor

Carol S. Comer, Director

NOV 0.2 2017

Mr. Kavan Stull, Senior Environmental Coordinator Empire District 602 South Joplin Avenue Joplin, MO 64802

RE: Site Characterization Workplan

Dear Mr. Stull:

The Missouri Department of Natural Resources has reviewed the document "Site Characterization Workplan" dated May 16, 2017. The site has undergone extensive characterization regarding construction of a coal combustion residual (CCR) landfill near the CCR impoundments. The department's Water Protection Program has determined, through consulting with the Missouri Geological Survey, this characterization is sufficient and may be used in whole to complete the required monitoring of the sub-surface conditions at the site. Additional submittal of site characterization is not necessary, as the previous submittal meets the requirement for special condition 19(b) of the Missouri State Operating Permit MO-0095362. The facility may proceed with the next step laid out in the permit; special condition 19(c). Enclosed is the Missouri Geological Survey concurrence.

If you were adversely affected by this decision, you may be entitled to an appeal before the Administrative Hearing Commission (AHC) pursuant to 10 CSR 20 1.020 and Section 621.250, RSMo. To appeal, you must file a petition with the AHC within 30 days after the date this decision was mailed or the date it was delivered, whichever date was earlier. If any such petition is sent by registered mail or certified mail, it will be deemed filed on the date it is mailed; if it is sent by any method other than registered mail or certified mail, it will be deemed filed on the date it is received by the AHC. Contact information for the AHC is by mail at Administrative Hearing Commission, United States Post Office Building, Third Floor, 131 West High Street, P.O. Box 1557, Jefferson City, MO 65102, by phone at 573-751-2422, by fax at 573-751-5018, and by website at www.oa.mo.gov/ahc.

Mr. Kavan Stull Page 2

If you have any questions, please do not hesitate to contact Ms. Pam Hackler by mail at Department of Natural Resources, Water Protection Program, P.O. Box 176, Jefferson City, MO 65102-0176, by phone at 573-526-3386; or by email at pam.hackler@dnr.mo.gov. Thank you.

Sincerely,

WATER PROTECTION PROGRAM

Michael J. Abbott, Chief Operating Permits Section

MJA/php

Enclosure

c: Mr. Randall Willoughby, Southwest Regional Office

MEMORANDUM

DATE:

October 18, 2017

SWR18011 Jasper County

TO:

Pam Hackler- WPP- Industrial Wastewater Unit

FROM:

Fletcher N. Bone, Geologist, Environmental Geology Section, Geological Survey Program,

MGS

SUBJECT:

Site characterization for existing CCR

impoundments

Asbury Power Plant Site Characterization Work

Plan- CCR

37 21 22.66 Latitude, -94 35 4.79 Longitude,

Jasper County, Missouri

October 18, 2017

The Missouri Geological Survey (MGS) has reviewed the documents titled, 'NPDES Permit MO-0095362 Asbury Power Plant, Jasper County, Missouri, Site Characterization Work Plan', prepared by Empire District Electric Company, dated September 8, 2017 and 'Site Characterization Work Plan, Coal Combustion Residuals Impoundments, Empire Electric Facility - Permit MO-0095362, Jasper County, Missouri, Geotechnology Project No. J021738.03', prepared by Geotechnology Inc., dated May 16, 2017. The MGS offers the following comment.

General Comment:

The MGS agrees that the existing Coal Combustion Residuals (CCR) impoundments (site 1) do not need further site characterization, at this time. The site characterization performed, as described in the Detailed Site Investigation Report (DSI), dated January 21, 2015, at the proposed CCR impoundment (site 2) that is approximately 1,000 feet south of the existing CCR impoundments (site 1), coupled with the geologic and hydrologic data provided that pertains to the existing CCR impoundments (site 1) (1996 to present data), provides adequate characterization of the geology and hydrology of the site 1. The geologic and hydrologic settings of both sites are similar, with geologic boring logs and potentiometric data of both sites being compared. The hydraulic conductivity testing conducted at the proposed CCR site (site 2) has demonstrated that there is a low potential for groundwater contamination for this area.

If you are in need of further assistance from our office or have questions regarding this evaluation please feel free to contact me at (573) 368-2161.

APPENDIX 2

Baseline Sampling Information

EPA CCR Rule

Appendix III to Part 257—Constituents for Detection Monitoring

Boron

Calcium

Chloride

Fluoride

рΗ

Sulfate

Total Dissolved Solids (TDS)

Appendix IV to Part 257—Constituents for Assessment Monitoring

Antimony

Arsenic

Barium

Beryllium

Cadmium

Chromium

Cobalt

Lead

Lithium

Mercury

Molybdenum

Selenium

Thallium

Radium 226 and 228 combined

1st Baseline Event – January 2016 Sampling Event

Constituent	Units	MCL	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6	MW-6A	MW-7
			II	Append	lix III					
Boron	mg/L	NA	0.33	<0.5 J	<0.05 J	<0.5 J	<0.5 J	<0.5 J	<0.5 J	<0.5 J
Calcium	mg/L	NA	57	74	220	84	200	250	140	570
Chloride	mg/L	NA	140	83	120	4.7	28	10	38	38
Fluoride	mg/L	4	0.43	0.47	0.31	0.28	0.30	0.24	0.35	<0.2 J
рН	SU	NA	6.33	5.81	6.31	7.33	7.09	6.97	7.09	6.51
Sulfate	mg/L	NA	260	360	1100	140	800	1000	600	1800
Total Dissolved Solids	mg/L	NA	690	790	1900	590	1500	1800	1300	2800
				Append	lix IV					
Antimony	mg/L	0.006	<0.002	<0.002 J						
Arsenic	mg/L	0.01	<0.002 J	0.01	<0.01 J	<0.02 J	<0.01	<0.01	<0.01	<0.01
Barium	mg/L	2	0.044	0.0099	0.065	0.086	0.036	0.02	0.042	0.011
Beryllium	mg/L	0.004	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Cadmium	mg/L	0.005	0.0012	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Chromium	mg/L	0.1	<0.002 J	<0.002 J	<0.01 J	<0.01 J	<0.01 J	<0.01 J	<0.01	<0.01
Cobalt	mg/L	NA	<0.01 J	<0.01 J	0.046	<0.002 J	0.018	0.0022	0.02	0.014
Lead	mg/L	0.015	<0.002 J	<0.002	<0.01 J	<0.002 J	<0.002	<0.002	<0.002	<0.002 J
Lithium	mg/L	NA	0.057	0.15	<0.05 J	<0.5 J	<0.5 J	<0.5 J	<0.5 J	<0.5 J
Mercury	mg/L	0.002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Molybdenum	mg/L	NA	<0.002	<0.002 J	<0.002 J	<0.002 J	<0.01 J	<0.002	<0.01 J	<0.002
Selenium	mg/L	0.05	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Thallium	mg/L	0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Combined Radium	pCi/L	5	<0.477 J	<0.427 J	<2.08	<0.563 J	<0.392 J	<0.446 J	<0.306 J	<0.279 J

<x = Less than reporting limit (nondetectable)</pre>

J = Trace value seen above minimum detection limit but below reporting limit (trace)

2nd Baseline Event – March 2016 Sampling Event

Constituent	Units	MCL	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6	MW-6A	MW-7
				Append	dix III					
Boron	mg/L	NA	0.90	0.060	<0.25	0.29	0.29	0.34	0.34	0.29
Calcium	mg/L	NA	120	92	260	94	190	250	160	620
Chloride	mg/L	NA	180	70	15	4.4	23	9.0	36	34
Fluoride	mg/L	4	0.28	0.28	0.10	0.38	0.31	0.23	0.31	0.16
рН	SU	NA	5.82	5.68	6.72	7.15	6.94	6.79	6.98	6.22
Sulfate	mg/L	NA	570	400	570	140	710	970	550	1800
Total Dissolved Solids	mg/L	NA	1300	840	1600	590	1500	1800	1200	2900
				Append	lix IV					
Antimony	mg/L	0.006	<0.002	<0.002	<0.002	<0.002	<0.002 J	<0.002	<0.002 J	<0.002
Arsenic	mg/L	0.01	<0.002 J	0.024	0.0038	<0.002 J	0.0038	0.0026	0.0025	0.004
Barium	mg/L	2	0.060	0.012	0.034	0.047	0.042	0.026	0.051	0.0089
Beryllium	mg/L	0.004	<0.002	<0.002 J	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Cadmium	mg/L	0.005	0.0028	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Chromium	mg/L	0.1	<0.002	<0.002 J	0.0034	<0.002	<0.002	<0.002	<0.002	<0.002
Cobalt	mg/L	NA	0.017	0.0095	0.021	<0.002 J	0.02	0.0061	0.0063	0.016
Lead	mg/L	0.015	<0.002 J	<0.002 J	<0.002 J	<0.002	<0.002	<0.002	<0.002	<0.002
Lithium	mg/L	NA	0.20	0.15	0.074	0.074	0.14	0.22	0.14	0.30
Mercury	mg/L	0.002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Molybdenum	mg/L	NA	<0.002	<0.002 J	<0.002	<0.002 J	0.0041	<0.002 J	0.0038	<0.002
Selenium	mg/L	0.05	<0.002	<0.002	<0.002	0.0021	0.0028	0.0031	0.0031	<0.002
Thallium	mg/L	0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Combined Radium	pCi/L	5	<0.337 J	<0.389 J	<0.84 J	<0.315 J	<0.336 J	<0.319 J	<0.348 J	<0.329 J

<x = Less than reporting limit (nondetectable)</pre>

J = Trace value seen above minimum detection limit but below reporting limit (trace)

3rd Baseline Event – May 2016 Sampling Event

Constituent	Units	MCL	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6	MW-6A	MW-7
				Append	dix III					
Boron	mg/L	NA	0.21	0.044	0.027	0.24	0.26	0.25	0.23	0.29
Calcium	mg/L	NA	130	100	91	5	59	11	90	36
Chloride	mg/L	NA	140	83	120	4.7	28	10	38	38
Fluoride	mg/L	4	0.28	0.27	0.22	0.55	0.35	0.26	0.43	0.18
рН	SU	NA	5.30	4.37	5.97	6.43	6.60	6.51	6.64	5.82
Sulfate	mg/L	NA	160	540	820	150	920	1400	620	2400
Total Dissolved Solids	mg/L	NA	500	800	1700	590	1500	1800	1100	2900
				Append	lix IV					
Antimony	mg/L	0.006	<0.002 J							
Arsenic	mg/L	0.01	0.0013	0.027	0.01	0.0043	0.01	0.007	0.0037	0.0082
Barium	mg/L	2	0.021	0.01	0.025	0.045	0.037	0.041	0.04	0.021
Beryllium	mg/L	0.004	<0.001	<0.001 J	<0.001 J	<0.001	<0.001	<0.001	<0.001	<0.001
Cadmium	mg/L	0.005	0.0011	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Chromium	mg/L	0.1	<0.002 J	<0.002 J	0.0025	<0.002 J				
Cobalt	mg/L	NA	0.0072	0.0073	0.0071	<0.0005J	0.00081	0.0035	<0.0005J	0.0037
Lead	mg/L	0.015	<0.001 J	<0.001 J	<0.001 J	<0.001 J	<0.001	<0.001	<0.001 J	<0.001 J
Lithium	mg/L	NA	<0.05 J	0.15	<0.05 J	0.074	0.16	0.31	0.12	0.22
Mercury	mg/L	0.002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Molybdenum	mg/L	NA	<0.005	<0.005	<0.005	<0.005	<0.005 J	0.0052	<0.005	<0.005
Selenium	mg/L	0.05	<0.005	<0.005	<0.005 J	<0.005	<0.005 J	<0.005 J	<0.005	<0.005
Thallium	mg/L	0.002	<0.001 J	<0.001	<0.001	<0.001	<0.001 J	<0.001 J	<0.001	<0.001
Combined Radium	pCi/L	5	<0.355	<0.427 J	<0.386 J	<0.402 J	<0.377 J	<0.357 J	<0.334 J	<0.333 J

<x = Less than reporting limit (nondetectable)</pre>

J = Trace value seen above minimum detection limit but below reporting limit (trace)

4th Baseline Event – August 2016 Sampling Event

Constituent	Units	MCL	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6	MW-6A	MW-7
				Append	dix III					
Boron	mg/L	NA	0.19	0.057	0.067	0.27	0.27	0.29	0.27	0.22
Calcium	mg/L	NA	38	79	110	74	180	220	130	430
Chloride	mg/L	NA	120	77	35	6	35	12	65	49
Fluoride	mg/L	4	0.25	0.15	0.3	0.26	0.31	0.23	0.37	0.22
рН	SU	NA	6.04	5.73	7	7.17	7.04	6.88	7.14	6.29
Sulfate	mg/L	NA	<0.005 J	<0.005	<0.005 J	<0.005 J				
Total Dissolved Solids	mg/L	NA	460	850	730	540	1500	1800	1100	2900
				Append	lix IV					
Antimony	mg/L	0.006	<0.002 J							
Arsenic	mg/L	0.01	<0.001 J	0.013	<0.001 J	<0.001 J	0.001	<0.001 J	<0.001 J	<0.001 J
Barium	mg/L	2	0.023	<0.01 J	0.012	0.035	0.031	0.014	0.037	<0.01 J
Beryllium	mg/L	0.004	<0.001	<0.001 J	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Cadmium	mg/L	0.005	<0.001 J	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Chromium	mg/L	0.1	<0.002	<0.002	<0.002 J	<0.002	<0.002	<0.002	<0.002	<0.002
Cobalt	mg/L	NA	0.0052	0.0088	0.0038	<0.0005J	0.00075	<0.0005J	<0.0005J	0.015
Lead	mg/L	0.015	<0.001 J	<0.001 J	<0.001 J	<0.001 J	<0.001	<0.001	<0.001 J	<0.001
Lithium	mg/L	NA	<0.05 J	0.16	<0.05 J	0.078	0.16	0.22	0.11	0.34
Mercury	mg/L	0.002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Molybdenum	mg/L	NA	<0.005	<0.005	<0.005	<0.005	<0.005 J	<0.005	0.0067	<0.005
Selenium	mg/L	0.05	<0.005 J	<0.005	<0.005 J	<0.005 J				
Thallium	mg/L	0.002	<0.001 J	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Combined Radium	pCi/L	5	<0.424 J	<0.465 J	<0.833	<0.441 J	<0.435 J	<0.45 J	<0.484 J	<0.418 J

<x = Less than reporting limit (nondetectable)</pre>

J = Trace value seen above minimum detection limit but below reporting limit (trace)

5th Baseline Event – October 2016 Sampling Event

Constituent	Units	MCL	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6	MW-6A	MW-7
				Append	dix III					
Boron	mg/L	NA	0.2	0.053	0.047	0.24	0.33	0.34	0.31	0.26
Calcium	mg/L	NA	43	91	100	94	220	260	130	490
Chloride	mg/L	NA	130	65	74	6	29	13	65	56
Fluoride	mg/L	4	0.28	0.18	0.28	0.31	0.39	0.25	0.41	0.28
рН	SU	NA	6.59	5.95	7.21	7.51	8.00	6.98	7.85	6.75
Sulfate	mg/L	NA	99	470	120	120	1100	1100	570	1400
Total Dissolved Solids	mg/L	NA	460	850	580	570	1500	1700	1100	2800
				Append	lix IV					
Antimony	mg/L	0.006	<0.002	<0.002	<0.002 J	<0.002	<0.002	<0.002	<0.002 J	<0.002
Arsenic	mg/L	0.01	<0.001	0.014	<0.001 J	<0.001 J	<0.001 J	<0.001	<0.001 J	<0.001 J
Barium	mg/L	2	0.028	<0.01 J	0.02	0.03	0.033	0.013	0.037	<0.01 J
Beryllium	mg/L	0.004	<0.001	<0.001 J	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Cadmium	mg/L	0.005	<0.001 J	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Chromium	mg/L	0.1	<0.002	<0.002	<0.002 J	<0.002	<0.002	<0.002	<0.002	<0.002
Cobalt	mg/L	NA	0.0051	0.0095	0.0013	0.00073	0.0072	<0.0005J	<0.0005J	0.014
Lead	mg/L	0.015	<0.001 J	<0.001	<0.001 J	<0.001 J	<0.001	<0.001	<0.001	<0.001
Lithium	mg/L	NA	<0.05 J	0.17	<0.05	0.078	0.17	0.24	0.12	0.32
Mercury	mg/L	0.002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Molybdenum	mg/L	NA	<0.005	<0.005	<0.005	<0.005	<0.005 J	0.0066	<0.005	<0.005
Selenium	mg/L	0.05	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005J	<0.005
Thallium	mg/L	0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Combined Radium	pCi/L	5	<0.436J	<0.478J	<0.535J	<0.503J	<0.498J	<0.464J	<0.453J	<0.424J

<x = Less than reporting limit (nondetectable)</pre>

J = Trace value seen above minimum detection limit but below reporting limit (trace)

6th Baseline Event – March 2017 Sampling Event

Constituent	Units	MCL	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6	MW-6A	MW-7
				Append	dix III			l		
Boron	mg/L	NA	0.22	0.052	0.057	0.23	0.29	0.33	0.36	0.26
Calcium	mg/L	NA	38	93	250	86	200	260	170	500
Chloride	mg/L	NA	130	52	19	5.3	29	11	19	39
Fluoride	mg/L	4	0.21	0.12	<0.1 J	0.29	0.29	0.19	0.3	0.12
рН	SU	NA	6.07	5.84	6.67	7.32	7.38	7.15	7.21	6.40
Sulfate	mg/L	NA	130	540	630	150	1100	1000	720	1900
Total Dissolved Solids	mg/L	NA	500	940	1600	620	1700	1900	1400	3000
				Append	lix IV					
Antimony	mg/L	0.006	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Arsenic	mg/L	0.01	<0.001	0.037	0.0022	0.0013	0.0014	<0.001 J	0.0043	<0.001 J
Barium	mg/L	2	0.021	0.011	0.021	0.033	0.026	0.015	0.027	<0.01 J
Beryllium	mg/L	0.004	<0.001 J	0.0012	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001 J
Cadmium	mg/L	0.005	0.0012	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Chromium	mg/L	0.1	<0.002 J							
Cobalt	mg/L	NA	0.0071	0.0097	0.0096	<0.0005J	0.0022	0.0024	0.0017	0.014
Lead	mg/L	0.015	<0.001	<0.001	<0.001 J	<0.001 J	<0.001	<0.001	<0.001	<0.001
Lithium	mg/L	NA	<0.05 J	0.17	0.072	0.076	0.16	0.23	0.14	0.32
Mercury	mg/L	0.002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Molybdenum	mg/L	NA	<0.005 J	<0.005 J	<0.005	<0.005	<0.005 J	<0.005	<0.005 J	<0.005
Selenium	mg/L	0.05	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Thallium	mg/L	0.002	<0.001 J	<0.001 J	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Combined Radium	pCi/L	5	0.575	1.63	0.287	1.50	0.803	2.68	1.73	1.62

<x = Less than reporting limit (nondetectable)</pre>

J = Trace value seen above minimum detection limit but below reporting limit (trace)

7th Baseline Event – June 2017 Sampling Event

Constituent	Units	MCL	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6	MW-6A	MW-7
				Append	dix III					
Boron	mg/L	NA	<0.08J	<0.08J	0.034	0.27	0.31	0.37	0.36	0.26
Calcium	mg/L	NA	42	100	300	89	200	260	160	470
Chloride	mg/L	NA	130	54	110	5.4	23	12	26	48
Fluoride	mg/L	4	0.43	0.19	0.18	0.35	0.42	0.3	0.42	0.21
рН	SU	NA	6.35	5.78	6.62	7.22	7.04	6.93	7.09	6.41
Sulfate	mg/L	NA	78	650	1400	180	940	1300	780	2400
Total Dissolved Solids	mg/L	NA	450	950	2000	610	1600	1800	1400	2900
				Append	lix IV					
Antimony	mg/L	0.006	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Arsenic	mg/L	0.01	<0.001J	0.1	0.0032	<0.001J	0.0037	<0.001	0.0018	<0.001
Barium	mg/L	2	0.03	0.016	0.048	0.04	0.026	0.017	0.025	<0.01J
Beryllium	mg/L	0.004	<0.001	0.0031	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Cadmium	mg/L	0.005	<0.001J	<0.001	<0.001J	<0.001	<0.001	<0.001	<0.001	<0.001
Chromium	mg/L	0.1	<0.002	<0.002	<0.002J	<0.002	<0.002	<0.002	<0.002	<0.002
Cobalt	mg/L	NA	0.004	0.0088	0.0042	<0.0005J	0.0045	0.00087	0.0059	0.0015
Lead	mg/L	0.015	0.0033	0.001	0.0074	<0.001	<0.001	<0.001	<0.001	<0.001
Lithium	mg/L	NA	<0.05J	0.18	0.053	0.085	0.18	0.25	0.15	0.34
Mercury	mg/L	0.002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Molybdenum	mg/L	NA	<0.005	<0.005J	<0.005	<0.005	<0.005J	<0.005	<0.005J	<0.005
Selenium	mg/L	0.05	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Thallium	mg/L	0.002	<0.001	<0.001	<0.001J	<0.001	<0.001	<0.001	<0.001	<0.001
Combined Radium	pCi/L	5	<0.397J	<0.337J	<0.403	<0.291J	<0.343J	<0.414J	<0.33J	<0.314J

<x = Less than reporting limit (nondetectable)</pre>

J = Trace value seen above minimum detection limit but below reporting limit (trace)

8th Baseline Event – August 2017 Sampling Event

Constituent	Units	MCL	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6	MW-6A	MW-7
			1	Append	dix III			ı		
Boron	mg/L	NA	0.16	<0.08J	<0.08J	0.28	0.33	0.34	0.38	0.27
Calcium	mg/L	NA	43	98	83	57	220	250	180	510
Chloride	mg/L	NA	130	45	8.1	5.3	23	12	26	38
Fluoride	mg/L	4	0.26	0.17	0.32	0.27	0.45	0.25	0.4	0.22
рН	SU	NA	6.2	5.7	6.7	7.3	7.0	7.2	7.1	6.3
Sulfate	mg/L	NA	82	550	63	140	920	1100	730	2200
Total Dissolved Solids	mg/L	NA	450	960	450	530	1600	1800	1400	2900
				Append	lix IV					
Antimony	mg/L	0.006	<0.002J	<0.002J	<0.002J	<0.002J	<0.002J	<0.002J	<0.002J	<0.002
Arsenic	mg/L	0.01	<0.001J	0.013	<0.001J	0.002	<0.001J	<0.001J	<0.001J	<0.001J
Barium	mg/L	2	0.024	0.01	0.018	0.027	0.023	0.018	0.021	<0.01J
Beryllium	mg/L	0.004	<0.001	<0.001J	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001J
Cadmium	mg/L	0.005	<0.001J	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Chromium	mg/L	0.1	<0.002J	<0.002	0.0026	<0.002	<0.002	<0.002	<0.002	<0.002
Cobalt	mg/L	NA	0.0036	0.01	0.00067	<0.0005J	0.0023	<0.0005J	0.0051	0.014
Lead	mg/L	0.015	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Lithium	mg/L	NA	<0.05J	0.17	<0.05J	0.073	0.18	0.22	0.15	0.32
Mercury	mg/L	0.002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Molybdenum	mg/L	NA	<0.005	<0.005J	<0.005	<0.005J	<0.005J	<0.005J	<0.005J	<0.005
Selenium	mg/L	0.05	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Thallium	mg/L	0.002	<0.001J	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Combined Radium	pCi/L	5	<0.42J	<0.417J	<0.473	<0.476J	<0.383J	<0.389J	<0.291J	<0.346J

<x = Less than reporting limit (nondetectable)</pre>

J = Trace value seen above minimum detection limit but below reporting limit (trace)

MW-5AR Baseline Events

Constituent	Units	MCL	1st	2nd	3rd	4th	5th	6th	7th	8th
			May 2023	Nov 2023 Append	May 2024	Nov 2024	May 2025	Nov 2025	May 2026	Nov 2026
Boron	mg/L	NA	0.370	преп						
Calcium	mg/L	NA	77							
Chloride	mg/L	NA	77							
Fluoride	mg/L	4	0.51							
pH	SU	NA	7.46							
Sulfate	mg/L	NA	190							
Total Dissolved Solids	mg/L	NA	650							
			U.	Append	dix IV		l	l		
Antimony	mg/L	0.006	<0.002							
Arsenic	mg/L	0.01	0.0019							
Barium	mg/L	2	0.046							
Beryllium	mg/L	0.004	<0.001							
Cadmium	mg/L	0.005	<0.001							
Chromium	mg/L	0.1	<0.002							
Cobalt	mg/L	NA	0.0013							
Lead	mg/L	0.015	<0.001							
Lithium	mg/L	NA	0.1							
Mercury	mg/L	0.002	<0.0002							
Molybdenum	mg/L	NA	<0.005J							
Selenium	mg/L	0.05	<0.005							
Thallium	mg/L	0.002	<0.001							
Combined Radium	pCi/L	5	1.98J							

<x = Less than reporting limit (nondetectable)</pre>

J = Trace value seen above minimum detection limit but below reporting limit (trace)

APPENDIX 3

Monitoring Well Field Inspection Sheets and Field Notes

Facility:	Asbury	CCR (Permit #)	P		Well ID: M			- > /
Purge In	formation:					Sample	e Blind	Duplicate	Field B	ank .
_		e: Peristaltic Pu	mp with 3/	/8 - inch	Diameter	Tubing				1
						. ~	18 00			
		Actual Purg	ge Volume f	Remove	d:	WomL po	ost pump cal	bration .		
Date / Ti	me Initiated:	5 17 -23	@ [[24	Date	e / Time Cor	mpleted: <u>5</u> -	17	-23	
Well Pur	ged To Dryne	ess?: Y/M		Ga	s Detected	1? Y /N	7			
Purge Da	ata:	0								
				T						Othor
	Purge	Cumulative			S	pecific	Dissolved			Other (Color
	Rate	Volume	Temp.	рН		ductivity	Oxygen	ORP	Turbic	
Time	(mL/min)	(mL)	(°C)	(SU)		nS/cm)	(mg/L)	(MV)	() Odor)
15:31	200	600	18.9	5,9	3 0	864	0,36	248	8	Clegi
:33		1000	18.2	50		857	0,17	237		
.35		1400	18.1	5.9		854	0.15	333		
:37		12100	18.0	59		2853		229.		1/
. , , ,	Ψ	(300	1000	1.9	10	100/	0.13	ज प्रमुख,	1	- V
				d Blan	+	Platet .		1		
			/		1 1	Field Inspe Access	ction	Good	<u>Fair</u>	<u>Poor</u>
Time sam	npled	11:40/	11:50	0		Pad Condit	ion	G	F	P
		1				Casing Con		G	F	P
		M W	1	400		Locking Cap		G	F	P
Weather	Conditions_	Mostly 5	4 May	10		Riser Condi	ition	\G/	F	Р
						Field Inspe		Ye	s No	<u>N/A</u>
Water Le	ual Start	3.68				Well ID Visi		(X)	N	N/A
water rev	ver start	1100				Standing W		X		N/A
		1121				Clear of We		(X)	\leq N	N/A
Water Lev	vel Finish	613				Measuring	e with MDNR	. (Y	N	N/A
							ce Performed			N/A N/A
							nation Norma			N/A N/A
Name (M	EC Field Samı	oler): <u>Ryan Ortba</u>	ls and Rick	Elgin			Calibration N		5 N	N/A
		1	11	1			nent Needed		IN	1
_	(the new X	41/			Any deviation	ons from SAF	Υ	N	/ N/A
Sampler S	ignature	Chul C	XV)			Sediment Tl	hickness Che	cked Y	N	N/A
Historical	Data: Averag	ge of sampling ev	ents. Note	MW-5-	AR first sa	mpled May	2023			
Constitue	ent			1W-1	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-5-AR
рН		S.	U. NO) TEST	5.83	5.08	6.30	6.83	6.82	
	Conductance	umho		GW	0.786	1.132	2.083	0.841	1.769	
Total Wel				evel						
	GW Depth			Only	1.24	0.4	5.39	1.32	6.92	
Average (f	t						11	
2 System	Volumes	m	L D	ON'T	800	800	800	800	800	

Facility:	Asbury	CCR (Permit #		1	N		Well ID: M	-		5 _
	formation: of Well Purge	e: Peristaltic l	oump wit	h 3/8 - inch	Diameter '	•	e Blind	Duplicate	Field B	lank
						n				
		Actual Pu	_	me Remove		mL po	ost pump cali	bration .		
Date / Ti	me Initiated:	5 17-2	23 @	12:01	Date	/ Time Cor	mpleted: <u>5 -</u>	17	-23	
Well Pur	ged To Dryne	ss?: Y //N		Ga	as Detected	3 ANN	7			
Purge Da	nta:									
Time	Purge Rate (mL/min)	Cumulative Volume (mL)	Tem		Cond	pecific ductivity nS/cm)	Dissolved Oxygen (mg/L)	ORP (MV)	Turbio	Other (Color, dity Clarity,) Odor)
12:09	200	400	18.	1 5.8	1 1.2	74	0,59	142.	7	Clear
:15	1	200	17.0				0-57	11 1 1 1 1 1 1 1 1		legr
		1200				179	0,28	109.0	1	
:13		1000	17.	3 58	31 lia	フラ	10,23	95.0)	
15	V	1600	17.	3 5.9	82 1,0	280	0.20	8510		1
		,								
				-		Field Inspe	ection	Good	<u>Fair</u>	Poor
Time sam Weather		Partly 5		700	of I	Access Pad Condit Casing Con Locking Cal Riser Cond Field Inspe	dition p & Lock ition <u>ction</u>	G G G G Ye	F F F F F	P P P P P P
Water Lev	vel Start	206				Well ID Visi Standing W		Ç		N/A N/A
Water Lev	vel Finish	2.09	(Clear of We Measuring Split sample	eeds			N/A N/A N/A N/A N/A
Name (MI Sampler S	(oler): Ryan Ort	bals and f	Rick Elgin	E F <i>A</i>	Equipment Redevelopr Any deviati	nation Norma Calibration N nent Needed ons from SAP	lormal (Y Y Y	N N	/ '
Samplei S	ignature	A Paris		/		ediment T	hickness Che	cked Y	(N	/ N/A
		ge of sampling	events. N	ote: MW-5-	-AR first sar	npled May	2023			
Constitue			Units	MW- 1	MW-2/	MW-3	MW-4	MW-5	MW-5A	MW-5-AR
рН			S.U.	NO TEST	5.83	5.08	6.30	6.83	6.82	
	onductance	um	hos/cm	GW	0.786	1.132	2.083	0.841	1.769	
Total We			ft	Level						
	GW Depth		ft	Only	1.24	0.4	5.39	1.32	6.92	
Average (ft							
2 System	Volumes		mL	DON'T	800	800	800	800	800	

Facility:	Asbury	CCR (Permi	:#	1	N		Well IP: M			
_	formation: of Well Purge	· Peristalti	c Pumn witi	h 3/8 - inch	Diameter :	Sample	e Blind	Duplicate _	Field Bl	ank
	0									
		Actual	Purge Volun	ne Removed	d: [00]) mL pc	ost pump cali	bration .		
Date / Ti	me Initiated:	5 17	-23 @ lC	0136	Date	/ Time Cor	npleted: <u>5</u> –	17 -	23	
Well Pur	ged To Dryne	sś?: Y /)	Ga	s Detected	? Y /(N))			
Purge Da	ita:	'								
Time	Purge Rate (mL/min)	Cumulati Volume (mL			Cond	ecific luctivity S/cm)	Dissolved Oxygen (mg/L)	ORP (MV)	Turbid	Other (Color, ity Clarity,) Odor)
10:39	200	600	18,0	0 6.86	6 1.9	11	0.36	2410	7	Clean
:41		1000	17.	C. 1 1 1 2 2	1 .	04	0.25			
:43		1400	1	121.2		03	0,23	9383		
45		Ron	175			03			-	1/
		100	17.5	Octo	2 117	0 /	0,13	829.4		1
						Field Inspe	ection	Good	Fair	Poor
	npled	10:4 Most	ly 50	nny 7	10°F	Access Pad Condit Casing Con Locking Ca _l Riser Condi Field Inspe Well ID Visi	ion dition p & Lock ition ction	G G G G	Fair F F F F No	P P P P P P
Water Le	vel Start					Standing W Clear of We	/ater eeds	Q Q	A N	N/A N/A
Water Lev	vel Finish	11,	88'			Maintenan	e with MDNR ce Performed	Y	N	N/A
Name (M. Sampler S	EC Field Samp	pler): Ryan C	Ortbals and I	Rick Elgin	E	Equipment Redevelopr Any deviati	nation Norma Calibration Nent Needed ons from SAF hickness Che	lormal Ø	N N N N N N N N N N N N N N N N N N N	N/A N/A N/A N/A N/A
Historical	Data: Averag	of campli	ag ovente N	loto: NAM E	AP first say	anled May	2022			
Constitu		5c or sampli	Units	MW- 1	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-5-AR
рН			S.U.	NO TEST	5.83	5.08	6.30	6.83	6.82	IAIAA-D-WIV
	Conductance	l	mhos/cm	GW	0.786	1.132	2.083	0.841	1.769	
Total We			ft	Level			2.555	0.011	2.703	
	GW Depth		ft	Only	1.24	0.4	5.39	1.32	6.92	
Average	GW Drop		ft							
	Volumes		mL	DON'T	800	800	800	800	800	
/Min Door	rad Amount		1116	CARADIE	000		1			

Facility:	Asbury	CCR (Permit #		1	N		Well ID: M		The Line	. 🗀
Purge In	formation:					Sample	e Blind	Duplicate [Field Bla	ank
		e: Peristaltic Pu	mp with 3	/8 - inch	Diameter '	Tubing	(.	(
					1	-				
		Actual Purg			160	mL po	ost pump cali	bration .		
Date / Ti	ime Initiated:	5 16 -23	e J	: 22	Date	/ Time Cor	mpleted: <u>5</u> –	16	-23	
Mall Dun	and To Daws	x (b)		_			\neg			
well Pur	ged To Dryne	ss?: Y/N		Gas	s Detected	? Y N				
Purge Da	ata:					———				
	Purge	Cumulative			Sı	pecific	Dissolved			Other (Color,
	Rate	Volume	Temp.	pH	1 .	ductivity	Oxygen	ORP	Turbid	
Time	(mL/min)	(mL)	(°C)	(SU)	(m	S/cm)	(mg/L)	(MV)	() Odor)
3:24	200	400	16,9	7,4	1 1	053	0,26	927	18	
.06		800	16,7	THE	-	050	0.15	218		
28		1200	16,6	7,40		DUA.	0.10	209	1	
-	1	1to PD	1							
:30	V	lea	16.5	7.47	1,0	4-1	0,09	205	8	
			1 0	Julicot.	e	Field Inspe	ection	Good	d Fair	Poor
		3:30	13:4			Access		G	(F)	P
Time san	npled	1.10	7.00	1	-	Pad Condit		/G\	F	P
		/				Casing Con		G	F	Р
Weather	Conditions_	Moud	65	OF		Locking Ca Riser Cond	-	\G G	/ F	P P
vv cutife!		Living	100			Field Inspe		G/ Ve	s No	
		2101				Well ID Vis		<u>Ye</u>) <u>N</u>	N/A
Water Le	vel Start	2.66				Standing W		Y	N	N/A
						Clear of W	eeds	R	2 N	N/A
	1 = 1 . 1	11,23	2			Measuring		E) N	_ N/A
Water Le	vel Finish	1110010	/				e with MDNR		N) N/A
							ce Performed nation Norma	_	\sim \sim) N/A
Name (M	IEC Field Sam	pler): <u>Ryan Ortb</u>	als and Ric	k Floin			Calibration N	(A)	5 N	N/A
		A A	AA	K LIGHT			ment Needed		N	N/A N/A
		1/2	14	1			ions from SAF		(/ N	N/A
Sampler S	Signature	10 mg	ZU	//			hickness Che		()	N/A
Historical	Data: Avera	an of compling of	vonte Net	o. 0.0) A / F	AD finat and		2022			
Constitu		ge of sampling e		e: MW-5-	MW-2	MW-3	MW-4/	DAIA! E	ANNE SA	841415 45
рН				NO TEST	5.83	5.08	6.30	MW-5	MW-5A 6.82	MW-5-AR
	Conductance		os/cm	GW	0.786	1.132	2.083	0.841	1.769	
Total We			ft	Level	0.700	1.102	2.003	0.041	1.705	
	GW Depth		ft	Only	1.24	0.4	5.39	1.32	6.92	
	GW Drop		ft							
	Volumes		nL _	DON'T	900	800	800	800	800	
(Min Pur	ged Amount)	, I	''L G	AMDIE	800	1				

Facility:	Asbury	CCR (Permit #		1	N	_	Well ID: M		<u> </u>	
Purge In	formation:					Sample	e Blind	Duplicate	Field Bla	nk
-		e: Peristaltic P	ump with	3/8 - inch	Diameter	Tubing				
					771	1/1				
		Actual Pu	rge Volume	Removed	000	() mL po	ost pump cali	bration .		
Date / Ti	ime Initiated:	5 17 -2	3 @ 9	:5/	Date	/ Time Cor	mpleted: <u>5</u> -	1)	23	
Well Pur	ged To Dryne	ss?: Y //N	2	Ga	s Detected	2 V/K)			
	0			Gu						
Purge Da	ata:									
Time	Purge Rate (mL/min)	Cumulative Volume (mL)	Temp.	. pH	Con	pecific ductivity iS/cm)	Dissolved Oxygen	ORP	Turbidi	· Giantity,
		(1112)	()	(30)			(mg/L)	(MV)) Odor)
9:56	200	(OO)	16.5	6.9	5 716	65	0,47	331	6	1/20
:58	j	1400	16.3	6.9		176	0,36	332	7	
10. Da		1000			-	170	1. Sec. 11.		*	
10.00		1800	16.2			177	0.18	2521	2	
:02		2410	16.0	3 6.9	W 3,	481	017	231,	2	V
)	
						Field Inspe	ection	Good	<u>Fair</u>	Poor
		10.0				Access	ction	/G	F	P P
Time sam	npled	10:00)			Pad Condit	ion	(G) F	P
		1				Casing Con		G	/ F	Р
Weather	Conditions	Va. 41	Mond	60	- 01	Locking Ca		\G	/ F	Р
weather	conditions_	1911y	(logory	, 00		Riser Cond Field Inspe		G/ Ye:	F S No	P N/A
		100	2			Well ID Vis		γ		N/A
Water Le	vel Start	0,00	ž			Standing W	/ater	Υ	N	N/A
		10.0	x /			Clear of We		Υ	N	N/A
Waterle	vel Finish	1810	人			Measuring		Υ	N	N/A
water Le	vei riilisii	Col					e with MDNR ce Performed		N N	N/A N/A
							nation Norma		N	N/A
Name (M	IEC Field Sam _l	oler): <u>Ryan Ort</u>	oals and Ric	ck Elgin			Calibration N		N	N/A
		Λ	Mar	7		-	ment Needed		N	N/A
C	· 1/	16 200 - 1	LAX!				ons from SAF		N	N/A
Sampler	Signature	The C	7/ 0			sediment T	hickness Che	cked Y	N	N/A
Historical	l Data: Averag	ge of sampling	events. No	te: MW-5-	AR first sa	mpled May	2023		Y	
Constitu			Units	MW-1	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-5-AR
рН			S.U.	NO TEST	5.83	5.08	6.30	6.83	6.82	
	Conductance	um	nos/cm	GW	0.786	1.132	2.083	0.841	1.769	
Total We			ft	Level						
	GW Depth		ft	Only	1.24	0.4	5.39	1.32	6.92	
	GW Drop Volumes		ft	DON'T		800	900	900	900	
	ged Amount)		mL	SAMPLE	800	800	800	800	800	

Facility:	Asbury	CCR (Permit	#	1	N		Well ID: MI		R	
	formation: of Well Purge	e: Peristaltion	: Pump wit	h 3/8 - inch	Diameter	Sample Tubing	Billing	Duplicate _	Field Blank	(,
		Actual F	Purae Volur	ne Remove	1 1/p	M ml no	st pump calil	aration		
					u	O IIII bo	st pullip call	oration.		
Date / Ti	me Initiated:	5 //	-23 @	1.10	Date	/ Time Con	npleted: <u>5</u> –	17:	23	
Well Pur	ged To Dryne	ss?: Y/N		Ga	ıs Detected	l? Y/N				
Purge Da	ita:									
Time	Purge Rate (mL/min)	Cumulativ Volume (mL	re Tem) (°C		Con	pecific ductivity nS/cm)	Dissolved Oxygen (mg/L)	ORP (MV)	Turbidity	Other (Color, Clarity, Odor)
9:29	200	400	16.0	8 7.40	0 1.1	90	113	160.4		Clear
:30		800	1 16.0			176	liaa	1234		
:32		1200	16.	3 7.4		60	1.31	971		
:34	1/	1600	4.4	0	2011			Total Co.		1
- 77	W	1000	16,	3 8,4	6 1,	131	1.55	88.0	4	
						-1.1.1.				
Time sam Weather	Conditions_	9:35 Partly 4.29	(lou	dy 6		Field Inspe Access Pad Condit Casing Con Locking Cap Riser Condi Field Inspe Well ID Visi Standing W	ion dition o & Lock tion ction ble 'ater	Good G G G G G	F F F F NO N	Poor P P P P N/A N/A N/A
Water Lev	vel Finish	12.0	24'			Maintenan		I R	N N N N N	N/A N/A N/A N/A N/A
	EC Field Sam	pler): Ryan O	rtbals and	Rick Elgin	-	Equipment Redevelopr Any deviati	Calibration N nent Needed ons from SAP hickness Che	ormal Y Y	N N N	N/A N/A N/A N/A
	Data: Averag	ge of samplin	ig events. N	lote: MW-5	-AR first sa	mpled May	2023			A
Constitu	ent		Units	MW- 1	MW-2	MW-3	MW-4	MW-5	4 4	IW-5-ÁR
рН			S.U.	NO TEST	5.83	5.08	6.30	6.83	6.82	
	Conductance	u	mhos/cm	GW	0.786	1.132	2.083	0.841	1.769	
Total We			ft	Level						
	GW Depth		ft	Only	1.24	0.4	5.39	1.32	6.92	
	GW Drop		ft							
	Volumes ged Amount)		mL	DON'T SAMPLE	800	800	800	800	800	
(traini Full	5cu Amount)			JAIVIPLE			_	11 0	9 5	arth
							2)	16-2	K K	37

Durge In	formation:				Sample	e Blind C	Ouplicate	Field Blank	<u> </u>
_		: Peristaltic Pu	mn with 3/9	- inch Diam	eter Tubing	/			
Wickinga	or well talge	. I cristante i di	iiib Mitii 2/0	- inch blan	COM	C			
		Actual Purg	e Volume Re	emoved:	SU) mL po	ost pump calib	ration.		
		140 161	9	8:35			197		
Date / Ti	me Initiated:	5- att 18.	-23 @	1.72	Date / Time Cor	npleted: <u>5</u>	-223		
Well Dur	ged To Drynes	V (A)		Can Date	ected? Y / N	7			
vveii i diş	Bed 10 Diviles	3:. 1 ///19		Gas Dete	cteur y				
Purge Da	ıta:								
									Oth
	Purge	Cumulative			Specific	Dissolved			(Cole
	Rate	Volume	Temp.	рН	Conductivity	Oxygen	ORP	Turbidity	Clari
Time	(mL/min)	(ml)	(°C)	(SU)	(mS/cm)	(mg/L)	(MV)	()	Odo
8:38	200	600	187	6.98	1907	3,43	3118		01
		(mma)			10	2.13			6691
0:40		1000	18.6	7.00	1.907	11/	311.5		
42		1400	18.6	7.00	1.933	1.98	309.3		
44		1800	18,3	7.02	1937	1.84	36,0		3/
-			1	10-1	1.1.		10010		V
					Field Inspe	ection	Good	<u>Fair</u> <u>F</u>	oor
Time sam	nled	4545			Access Pad Condit	iau	G	(F)	Р
Title Sall	ipied	on of			Casing Con		GG	f	P P
		0 2			Locking Ca		G	F	P
Weather	Conditions /	artly /6	oud	65°F			G	F	P
		/	//	06'	Field Inspe	ction	Yes	No	N/A
		270-	- 14	16	Well ID Visi	ible	(V)	N	N/A
Water Le	vel Start	81-0	111	04	Standing W	/ater	(8)	Ń	N/A
		0,	90'		Clear of We		02	N	N/A
147.1	1 = 1	$\sim 21.$	90		Measuring		O	N	N/A
Water Lev	vei Finish	0011	, 0			e with MDNR	Y	Osm	N/A
						ce Performed nation Normal	(E)	DIII.	N/A
Name (M	EC Field Samn	ler): <u>Ryan Ortba</u>	ls and Rick	Flain		Calibration No	1-0-0	N	N/A N/A
(111		A.	M	4		ment Needed	illiai (1)	AND	N/A
		16 - 3	XXX	/	•	ons from SAP	Ý	(N)	N/A
Sampler S	ignature 🥢	Jan 1	XU/			hickness Chec	ked Y	N/	N/A
		0			1 al	al book	1.0	DATE	. (
	Data: Averag	e of sampling ev			(8)	e ACh M	100 .	J409	
stituent		Units	WW-6					U.	
oifia Carad		S.U.	6.72	6.87	6.12				1
cific Cond al Well De		umhos/cm ft	1.900	1.601	2.699				-
rage GW [ft	7.86	7.28	3.04				+
rage GW [ft	7.00	7.20	3.04				
			1				-		
stem Volu		1 100	900	800	000				11
		mL	800	800	800				

Facility:	Asbury (CCR (Permit #)	Monitoring	Well ID: MV	V- 07		
					Sampl	le 🔀 Blind I	Ouplicate	Field Blank	
_	formation:								
Method	of Well Purge	: Peristaltic Pu	mp with 3/8	3 - inch Dia	meter Tubing				
		Actual Burg	e Volume Re	amayadı.	(AC)	ost pump calik			
		_			4				
Date / Tir	me Initiated:	5- 16.	-23 @ X	1.41	Date / Time Co	mnleted: 5 –	16 -223		
				,			223		
Well Purg	ged To Dryne	ss?: Y/N		Gas De	tected? Y / N				
		, 0							
Purge Da	ta:								
			-						Other
	Purge	Cumulative			Specific	Dissolved			(Color,
	Rate	Volume	Temp.	pН	Conductivity	Oxygen	ORP	Turbidity	Clarity,
Time	(mL/min)	(ml)	(°C)	(SU)	(mS/cm)	(mg/L)	(MV)	()	Odor)
2:50	200	600	17.4	6,86	1.902	0.44	1885		
0:53		1000	120	6.85	1,902	0,27	1821		
54		1400	16,0	6,85	1.965	018	1773		
56	./	1200	15.8	6.85	1.966	MIL	1729		
100	V	1900	1218	0,37	1,766	0.14	1/95/		
			-		Field inspe	ection	Good	Fair P	oor
T:	امماميا	3:00			Access		G	E	P
rime sam	piea	1.00			Pad Condi		16	F	P
				4	Casing Cor Locking Ca		(G G	F	P P
Weather	Conditions	(loady	,650	/-	Riser Cond		\G/	F	P
		/ /			Field Inspe			No	N/A
		A 157			Well ID Vis	sible	Yes	Ŋ	N/A
Water Lev	vel Start	8.67			Standing V	Vater	Y	(N)	N/A
					Clear of W	'eeds	(2)	M	N/A
		16.18			Measuring			N	N/A
Water Lev	vel Finish	10010				le with MDNR	Y		N/A
						nce Performed	. Y	(N)	N/A
Name /M	EC Field Com.	alas). Divan Onthe	de and Diel.	Eleia		ination Norma		N	N/A
ivame (ivi	EC Field Samp	oler): <u>Ryan Ortba</u>	als and Kick	Elgin		t Calibration N		N	N/A
		1	11.			ment Needed	- γ	(N)	N/A
Sampler S	ignature	Man &	X	/		ions from SAP Thickness Chec	Y cked Y		N/A N/A
ournpier o	g.i.utui c	y C		-	Scalifient	mickiless chec	i i		IV/A
Historical	Data: Averag	ge of sampling ev	vents	1					
stituent		Units	MW-6	MW-	6A MW-7				
		S.U.	6.72	6.87	6.12				
cific Cond	uctance	umhos/cn	n 1.900	1.60	1 2.699				
al Well De	pth	ft							
rage GW [ft	7.86	7.28	3.04				
rage GW [ft		11					
stem Volu		mL	800	800	800				17
n Purged A	Amount)	1116	300	300	300				

Facility:	Asbury C	CCR (Permit #		1		Well ID: MV			
_	formation : of Well Purge	: Peristaltic Pui	որ with 3/8	3 - inch Dian		e Blind D	Ouplicate [Field Blank	
		Actual Purg	e Volume Re	emoved: [400 ml p	ost pump calib	ration.		
	me Initiated:	5-16		2:16	Date / Time Corected? Y / N		1-		-
Purge Da					·				
Time	Purge Rate (mL/min)	Cumulative Volume (ml)	Temp. (°C)	pH (SU)	Specific Conductivity (mS/cm)	Dissolved Oxygen (mg/L)	ORP (MV)	Turbidity	Other (Color, Clarity, Odor)
2:17	200	200	16.9	6.51	2.780	0.46	39.8		Clear
0:19		600	16.7	6.51	2.779	0.39	32,2		
ial	11/2	1000	16.5	6,50	2,780	0,28	276		
:23	V	1400	16.5	6,51	2.783	0,17	24.4		V
							/		
Water Le	Conditions vel Start vel Finish EC Field Sam	2:25 Clouds 3:22 4:20 High A		70 1	Maintenar Decontam Equipmen Redevelop Any deviat	ndition ap & Lock dition ection sible Water Veeds g Point ble with MDNR nce Performed ination Norma t Calibration Norma t Calibration SAP Thickness Chec	ormal Y	F F F F 2 2 2 2 2 2 2 2 2 2	P P P P P N/A N/A N/A N/A N/A N/A N/A N/A N/A
Historica	Data: Avera	ge of sampling e	vents		X		n Oddi	1	
nstituent		Units	MW-	-			-		
		S.U.	6.72		6.12				
ecific Cond		umhos/cr	n 1.900	1.601	2.699				
al Well De		ft	7.05	- 00	200				+
erage GW		ft	7.86	7.28	3.04				
erage GW ystem Vol		ft							-
ystem voli in Purged		mL	800	800	800				

APPENDIX 4

Analytical Results from Lab

ANALYTICAL REPORT

PREPARED FOR

Attn: Mr. Rick Elgin Midwest Environmental Consultants 2009 East McCarty Street Suite 2 Jefferson City, Missouri 65101

Generated 7/28/2023 4:42:30 PM

JOB DESCRIPTION

Asbury Pond CCR

JOB NUMBER

180-156848-4

Eurofins Pittsburgh 301 Alpha Drive RIDC Park Pittsburgh PA 15238

Eurofins Pittsburgh

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

PA Lab ID: 02-00416

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Pittsburgh Project Manager.

Authorization

Generated 7/28/2023 4:42:30 PM

Authorized for release by Andy Johnson, Senior Project Manager Andy.Johnson@et.eurofinsus.com (615)301-5045

Eurofins Pittsburgh is a laboratory within Eurofins Environment Testing Northeast LLC, a company within Eurofins Environment Testing Group of Companies
Page 2 of 44
7/28/2023

•

3

4

5

0

8

15

13

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Definitions/Glossary	6
Certification Summary	8
Sample Summary	10
Method Summary	11
Lab Chronicle	12
Client Sample Results	16
QC Sample Results	27
QC Association Summary	32
Chain of Custody	35
Racaint Chacklists	41

-5

4

8

46

11

Case Narrative

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond CCR

Job ID: 180-156848-4

Laboratory: Eurofins Pittsburgh

Narrative

Job Narrative 180-156848-4

Comments

No additional comments.

Receipt

The samples were received on 5/19/2023 9:35 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperatures of the 6 coolers at receipt time were 3.1° C, 3.8° C, 4.1° C, 5.6° C, 10.4° C and 12.4° C.

Receipt Exceptions

The following samples were received at the laboratory outside the required temperature criteria: MW-1 (180-156848-1), MW-11 (180-156848-11), FIELD BLANK (180-156848-13), MW-5A (180-156848-18) and MW-5AR (180-156848-19). This does not meet regulatory requirements.

The following sample was received with insufficient preservation: MW-6 (180-156848-20). The laboratory adjusted the pH and proceeded with the analysis.

GC Semi VOA

Methods 300.0, 9056A: The following samples were diluted due to the nature of the sample matrix: MW-4 (180-156848-16), MW-5A (180-156848-18), MW-6 (180-156848-20), MW-6A (180-156848-21) and MW-7 (180-156848-22) at 2.5, 2.5, 2.5, 2.5 and 2.5. Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

RAD

Methods 903.0, 9315: Radium-226 batch 613848 Any minimum detectable concentration (MDC), critical value (DLC), or Safe Drinking Water Act detection limit (SDWA DL) is sample-specific unless otherwise stated elsewhere in this narrative. Radiochemistry sample results are reported with the count date/time applied as the Activity Reference Date. MW-5AR (180-156848-19), (LCS 160-613848/2-A), (LCSD 160-613848/3-A) and (MB 160-613848/1-A)

Methods 904.0, 9320: Radium-228 batch 613850 Any minimum detectable concentration (MDC), critical value (DLC), or Safe Drinking Water Act detection limit (SDWA DL) is sample-specific unless otherwise stated elsewhere in this narrative. Radiochemistry sample results are reported with the count date/time applied as the Activity Reference Date. MW-5AR (180-156848-19), (LCS 160-613850/2-A), (LCSD 160-613850/3-A) and (MB 160-613850/1-A)

Method PrecSep_0: Radium-228 Prep Batch 160-613850 The following sample was prepared at a reduced aliquot due to Matrix: MW-5AR (180-156848-19). A laboratory control sample/ laboratory control sample duplicate (LCS/LCSD) were prepared instead of a sample duplicate (DUP) to demonstrate batch precision.

Method PrecSep-21: Radium-226 Prep Batch 160-613848 The following sample was prepared at a reduced aliquot due to Matrix: MW-5AR (180-156848-19). A laboratory control sample/ laboratory control sample duplicate (LCS/LCSD) were prepared instead of a sample duplicate (DUP) to demonstrate batch precision.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

Method 6020A: The serial dilution performed for the following sample associated with batch 180-441752 was outside control limits: DUPLICATE (180-156848-23)

Method 6020A: The initial calibration verification (ICVL) and continuing calibration verification (CCV) associated with batch 180-441752 recovered outside of control limits for boron. Results are being reported as-is. The associated samples are impacted: MW-3 (180-156848-15), MW-4 (180-156848-16), MW-5 (180-156848-17), MW-5A (180-156848-18), MW-6 (180-156848-20), MW-6A (180-156848-21), MW-7 (180-156848-22), DUPLICATE (180-156848-23), (CCB 180-441752/89), (CCV 180-441752/88) and (MB

0

Job ID: 180-156848-4

8

10

11

1,

Case Narrative

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond CCR

Job ID: 180-156848-4

Job ID: 180-156848-4 (Continued)

Laboratory: Eurofins Pittsburgh (Continued)

180-439774/1-A).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Field Service / Mobile Lab

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

Method SM 2540C: Sample did not achieve a stable weight following 4 cycles of heating, cooling, and desiccating. Sample result from cycle 3 was used to calculate analyte result for the method. MW-5 (180-156848-17)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

3

4

5

6

9

10

12

13

Definitions/Glossary

Client: Midwest Environmental Consultants Job ID: 180-156848-4

Project/Site: Asbury Pond CCR

Qualifiers

HPLC/IC

Qualifier **Qualifier Description**

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Metals

Qualifier **Qualifier Description**

Continuing Calibration Verification (CCV) is outside acceptance limits, low biased. ^+ Continuing Calibration Verification (CCV) is outside acceptance limits, high biased. ^1+ Initial Calibration Verification (ICV) is outside acceptance limits, high biased. ^2 Calibration Blank (ICB and/or CCB) is outside acceptance limits.

^6-Interference Check Standard (ICSA and/or ICSAB) is outside acceptance limits, low biased.

В Compound was found in the blank and sample.

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

General Chemistry

Qualifier Description Qualifier

Refer to Case Narrative for further detail cn

Rad

Qualifier **Qualifier Description**

Result is less than the sample detection limit.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery **CFL** Contains Free Liquid CFU Colony Forming Unit **CNF** Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

Detection Limit (DoD/DOE) DL

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

EPA recommended "Maximum Contaminant Level" MCL Minimum Detectable Activity (Radiochemistry) MDA

MDC Minimum Detectable Concentration (Radiochemistry) MDL

Method Detection Limit

ML Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RLReporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

Eurofins Pittsburgh

Page 6 of 44 7/28/2023

Definitions/Glossary

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond CCR

Job ID: 180-156848-4

Glossary (Continued)

Abbreviation

These commonly used abbreviations may or may not be present in this report.

TNTC

Too Numerous To Count

3

4

5

6

8

9

11

12

1

Accreditation/Certification Summary

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond CCR

Job ID: 180-156848-4

Laboratory: Eurofins Pittsburgh

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Arkansas DEQ	State	19-033-0	06-27-24
California	State	2891	04-30-24
Connecticut	State	PH-0688	09-30-24
Florida	NELAP	E871008	06-30-24
Georgia	State	PA 02-00416	04-30-24
Illinois	NELAP	004375	06-30-24
Kansas	NELAP	E-10350	01-31-24
Kentucky (UST)	State	162013	04-30-23 *
Kentucky (WW)	State	KY98043	12-31-23
Louisiana	NELAP	04041	06-30-22 *
Louisiana (All)	NELAP	04041	06-30-24
Maine	State	PA00164	03-06-24
Minnesota	NELAP	042-999-482	12-31-23
New Hampshire	NELAP	2030	04-04-24
New Jersey	NELAP	PA005	06-30-24
New York	NELAP	11182	04-01-24
North Carolina (WW/SW)	State	434	12-31-23
North Dakota	State	R-227	04-30-24
Oregon	NELAP	PA-2151	02-06-24
Pennsylvania	NELAP	02-00416	04-30-24
Rhode Island	State	LAO00362	12-31-22 *
South Carolina	State	89014	04-30-23 *
Texas	NELAP	T104704528	03-31-24
US Fish & Wildlife	US Federal Programs	058448	03-31-24
USDA	US Federal Programs	P330-16-00211	06-21-24
Utah	NELAP	PA001462019-8	05-31-24
Virginia	NELAP	10043	09-14-23
West Virginia DEP	State	142	01-31-24
Wisconsin	State	998027800	08-31-23

Laboratory: Eurofins St. Louis

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Alaska (UST)	State	20-001	05-06-25
ANAB	Dept. of Defense ELAP	L2305	04-06-25
ANAB	Dept. of Energy	L2305.01	04-06-25
ANAB	ISO/IEC 17025	L2305	04-06-25
Arizona	State	AZ0813	12-08-23
California	Los Angeles County Sanitation Districts	10259	06-30-22 *
California	State	2886	06-30-23
Connecticut	State	PH-0241	03-31-25
Florida	NELAP	E87689	06-30-23
HI - RadChem Recognition	State	n/a	06-30-23
Illinois	NELAP	200023	11-30-23
lowa	State	373	12-01-24
Kansas	NELAP	E-10236	10-31-23
Kentucky (DW)	State	KY90125	12-31-23
Kentucky (WW)	State	KY90125 (Permit KY0004049)	12-31-23

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

Eurofins Pittsburgh

Page 8 of 44

Accreditation/Certification Summary

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond CCR

Laboratory: Eurofins St. Louis (Continued)

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Louisiana	NELAP	04080	06-30-22 *
Louisiana (All)	NELAP	04080	06-30-23
Louisiana (DW)	State	LA011	12-31-23
Maryland	State	310	09-30-23
MI - RadChem Recognition	State	9005	06-30-23
Missouri	State	780	06-30-25
Nevada	State	MO000542020-1	07-31-23
New Jersey	NELAP	MO002	06-30-23
New Mexico	State	MO00054	06-30-23
New York	NELAP	11616	03-31-24
North Carolina (DW)	State	29700	07-31-23
North Dakota	State	R-207	06-30-23
Oklahoma	NELAP	9997	08-31-23
Oregon	NELAP	4157	09-01-23
Pennsylvania	NELAP	68-00540	02-28-24
South Carolina	State	85002001	06-30-23
Texas	NELAP	T104704193	07-31-23
US Fish & Wildlife	US Federal Programs	058448	07-31-23
USDA	US Federal Programs	P330-17-00028	05-18-26
Utah	NELAP	MO000542021-14	07-31-23
Virginia	NELAP	10310	06-29-23
Washington	State	C592	08-30-23
West Virginia DEP	State	381	10-31-23

Job ID: 180-156848-4

3

1

5

7

9

10

46

 $^{^{\}star} \ \text{Accreditation/Certification renewal pending - accreditation/certification considered valid}.$

Eurofins Pittsburgh

Sample Summary

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond CCR

Job ID: 180-156848-4

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
180-156848-14	MW-2	Water	05/17/23 11:40	05/19/23 09:35
180-156848-15	MW-3	Water	05/17/23 12:15	05/19/23 09:35
180-156848-16	MW-4	Water	05/17/23 10:45	05/19/23 09:35
180-156848-17	MW-5	Water	05/17/23 03:30	05/19/23 09:35
180-156848-18	MW-5A	Water	05/17/23 10:05	05/20/23 09:30
180-156848-19	MW-5AR	Water	05/17/23 00:00	05/20/23 09:30
180-156848-20	MW-6	Water	05/17/23 08:45	05/19/23 09:35
180-156848-21	MW-6A	Water	05/17/23 03:00	05/19/23 09:35
180-156848-22	MW-7	Water	05/17/23 02:25	05/19/23 09:35
180-156848-23	DUPLICATE	Water	05/17/23 03:45	05/19/23 09:35

2

Δ

5

6

8

9

10

11

12

13

Method Summary

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond CCR

Viethod	Method Description	Protocol	Laboratory
EPA 9056A	Anions, Ion Chromatography	SW846	EET PIT
EPA 6020A	Metals (ICP/MS)	SW846	EET PIT
EPA 7470A	Mercury (CVAA)	SW846	EET PIT
SM 2540C	Solids, Total Dissolved (TDS)	SM	EET PIT
9315	Radium-226 (GFPC)	SW846	EET SL
9320	Radium-228 (GFPC)	SW846	EET SL
Ra226_Ra228	Combined Radium-226 and Radium-228	TAL-STL	EET SL
Field Sampling	Field Sampling	EPA	EET PIT
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	EET PIT
7470A	Preparation, Mercury	SW846	EET PIT
PrecSep_0	Preparation, Precipitate Separation	None	EET SL
PrecSep-21	Preparation, Precipitate Separation (21-Day In-Growth)	None	EET SL

Protocol References:

EPA = US Environmental Protection Agency

None = None

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL-STL = TestAmerica Laboratories, St. Louis, Facility Standard Operating Procedure.

Laboratory References:

EET PIT = Eurofins Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058 EET SL = Eurofins St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

Job ID: 180-156848-4

4

0

a

10

11

12

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond CCR

Client Sample ID: MW-2 Lab Sample ID: 180-156848-14

Date Collected: 05/17/23 11:40 Date Received: 05/19/23 09:35

Matrix: Water

Job ID: 180-156848-4

Dil Batch Batch Batch Initial Final **Prepared** Method **Factor Prep Type** Type Run **Amount** Amount Number or Analyzed **Analyst** Lab EPA 9056A 435928 05/23/23 22:48 SNL EET PIT Total/NA Analysis 1 mL 1 mL Instrument ID: CHICS2100B Total Recoverable Prep 3005A 25 mL 25 mL 439774 07/07/23 09:40 S1Z **EET PIT** Total Recoverable Analysis EPA 6020A 1 440797 07/14/23 19:21 MRG **EET PIT** Instrument ID: NEMO Total/NA Analysis SM 2540C 1 100 mL 100 mL 435872 05/22/23 17:04 LWM **EET PIT** Instrument ID: NOEQUIP Total/NA Analysis Field Sampling 436880 05/17/23 12:40 FDS **EET PIT** Instrument ID: NOEQUIP

Client Sample ID: MW-3 Lab Sample ID: 180-156848-15 Date Collected: 05/17/23 12:15 **Matrix: Water** Date Received: 05/19/23 09:35

Batch Dil Batch Initial Final Batch Prepared Method **Prep Type** Type Run **Factor** Amount Amount Number or Analyzed Analyst Lab Total/NA Analysis EPA 9056A 1 mL 1 mL 435928 05/23/23 23:03 SNL **EET PIT** Instrument ID: CHICS2100B Total Recoverable Prep 3005A 25 mL 25 mL 439774 07/07/23 09:40 S1Z **EET PIT** Total Recoverable EPA 6020A 441752 07/27/23 16:35 KED Analysis **EET PIT** 1 Instrument ID: DORY Total/NA Analysis SM 2540C 100 mL 100 mL 435872 05/22/23 17:04 LWM **EET PIT** Instrument ID: NOEQUIP **EET PIT** Total/NA Analysis Field Sampling 436880 05/17/23 13:15 FDS Instrument ID: NOEQUIP

Client Sample ID: MW-4 Lab Sample ID: 180-156848-16 Date Collected: 05/17/23 10:45 **Matrix: Water** Date Received: 05/19/23 09:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	EPA 9056A		2.5	1 mL	1 mL	435928	05/23/23 23:18	SNL	EET PIT
	Instrumen	t ID: CHICS2100B								
Total Recoverable	Prep	3005A			25 mL	25 mL	439774	07/07/23 09:40	S1Z	EET PIT
Total Recoverable	Analysis	EPA 6020A		1			441752	07/27/23 16:38	KED	EET PIT
	Instrumen	t ID: DORY								
Total/NA	Analysis	SM 2540C		1	100 mL	100 mL	435872	05/22/23 17:04	LWM	EET PIT
	Instrumen	t ID: NOEQUIP								
Total/NA	Analysis	Field Sampling		1			436880	05/17/23 11:45	FDS	EET PIT
	Instrumen	t ID: NOEQUIP								

Eurofins Pittsburgh

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond CCR

Client Sample ID: MW-5

Lab Sample ID: 180-156848-17

Matrix: Water

Job ID: 180-156848-4

Date Collected: 05/17/23 03:30 Date Received: 05/19/23 09:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumen	EPA 9056A at ID: CHICS2100B		1	1 mL	1 mL	435928	05/23/23 23:33	SNL	EET PIT
Total Recoverable	Prep	3005A			25 mL	25 mL	439774	07/07/23 09:40	S1Z	EET PIT
Total Recoverable	Analysis Instrumen	EPA 6020A at ID: DORY		1			441752	07/27/23 16:42	KED	EET PIT
Total/NA	Analysis Instrumen	SM 2540C at ID: NOEQUIP		1	100 mL	100 mL	435872	05/22/23 17:04	LWM	EET PIT
Total/NA	Analysis Instrumen	Field Sampling at ID: NOEQUIP		1			436880	05/17/23 04:30	FDS	EET PIT

Client Sample ID: MW-5A Date Collected: 05/17/23 10:05

Date Received: 05/20/23 09:30

Lab Sample ID: 180-156848-18

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumen	EPA 9056A t ID: CHICS2100B		2.5	1 mL	1 mL	435928	05/23/23 23:48	SNL	EET PIT
Total Recoverable	Prep	3005A			25 mL	25 mL	439774	07/07/23 09:40	S1Z	EET PIT
Total Recoverable	Analysis Instrumen	EPA 6020A t ID: DORY		1			441752	07/27/23 16:45	KED	EET PIT
Total/NA	Analysis Instrumen	SM 2540C t ID: NOEQUIP		1	25 mL	100 mL	435991	05/23/23 20:17	LWM	EET PIT
Total/NA	Analysis Instrumen	Field Sampling t ID: NOEQUIP		1			436880	05/17/23 11:05	FDS	EET PIT

Client Sample ID: MW-5AR

Date Collected: 05/17/23 00:00 Date Received: 05/20/23 09:30 Lab Sample ID: 180-156848-19

Matrix: Water

	Batch	Batch	_	Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumen	EPA 9056A t ID: CHICS2100B		1	1 mL	1 mL	435928	05/24/23 00:02	SNL	EET PIT
Total Recoverable	Prep	3005A			25 mL	25 mL	440414	07/14/23 10:15	S1Z	EET PIT
Total Recoverable	Analysis Instrumen	EPA 6020A t ID: NEMO		1			441632	07/26/23 23:25	MRG	EET PIT
Total/NA	Prep	7470A			25 mL	25 mL	437479	06/09/23 10:00	MTW	EET PIT
Total/NA	Analysis Instrumen	EPA 7470A t ID: HGZ		1			437591	06/10/23 11:58	MTW	EET PIT
Total/NA	Analysis Instrumen	SM 2540C t ID: NOEQUIP		1	100 mL	100 mL	435991	05/23/23 20:17	LWM	EET PIT
Total/NA	Prep	PrecSep-21			754.15 mL	1.0 g	613848	05/31/23 09:34	KAC	EET SL
Total/NA	Analysis Instrumen	9315 t ID: GFPCRED		1			617353	06/22/23 08:22	FLC	EET SL

Eurofins Pittsburgh

5

Q

3

11

4 -

is Fillsburgh

7/28/2023

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond CCR

Client Sample ID: MW-5AR Lab Sample ID: 180-156848-19

Date Collected: 05/17/23 00:00 Matrix: Water Date Received: 05/20/23 09:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep_0			754.15 mL	1.0 g	613850	05/31/23 09:38	KAC	EET SL
Total/NA	Analysis Instrumer	9320 nt ID: GFPCORANG	E	1			617160	06/21/23 11:31	FLC	EET SL
Total/NA	Analysis Instrumer	Ra226_Ra228 nt ID: NOEQUIP		1			617517	06/23/23 13:17	EMH	EET SL
Total/NA	Analysis Instrumer	Field Sampling at ID: NOEQUIP		1			436880	05/17/23 01:00	FDS	EET PIT

Client Sample ID: MW-6 Lab Sample ID: 180-156848-20

Date Collected: 05/17/23 08:45

Date Received: 05/19/23 09:35

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrument	EPA 9056A ID: CHICS2100B		2.5	1 mL	1 mL	435928	05/24/23 00:17	SNL	EET PIT
Total Recoverable	Prep	3005A			25 mL	25 mL	439774	07/07/23 09:40	S1Z	EET PIT
Total Recoverable	Analysis Instrument	EPA 6020A ID: DORY		1			441752	07/27/23 16:56	KED	EET PIT
Total/NA	Analysis Instrument	SM 2540C ID: NOEQUIP		1	100 mL	100 mL	435991	05/23/23 20:17	LWM	EET PIT
Total/NA	Analysis Instrument	Field Sampling		1			436880	05/17/23 09:45	FDS	EET PIT

Client Sample ID: MW-6A

Date Collected: 05/17/23 03:00

Lab Sample ID: 180-156848-21

Matrix: Water

Date Received: 05/19/23 09:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumen	EPA 9056A t ID: CHICS2100B		2.5	1 mL	1 mL	435928	05/24/23 01:01	SNL	EET PIT
Total Recoverable	Prep	3005A			25 mL	25 mL	439774	07/07/23 09:40	S1Z	EET PIT
Total Recoverable	Analysis Instrumen	EPA 6020A t ID: DORY		1			441752	07/27/23 17:00	KED	EET PIT
Total/NA	Analysis Instrumen	SM 2540C t ID: NOEQUIP		1	100 mL	100 mL	435991	05/23/23 20:17	LWM	EET PIT
Total/NA	Analysis Instrumen	Field Sampling t ID: NOEQUIP		1			436880	05/17/23 04:00	FDS	EET PIT

Client Sample ID: MW-7 Lab Sample ID: 180-156848-22

Date Collected: 05/17/23 02:25 Matrix: Date Received: 05/19/23 09:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	EPA 9056A		2.5	1 mL	1 mL	435928	05/24/23 01:16	SNL	EET PIT
	Instrumer	nt ID: CHICS2100B								

Eurofins Pittsburgh

Page 14 of 44

2

Job ID: 180-156848-4

3

5

7

0

10

12

1

Matrix: Water

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond CCR

Client Sample ID: MW-7 Lab Sample ID: 180-156848-22

Date Collected: 05/17/23 02:25 **Matrix: Water** Date Received: 05/19/23 09:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			25 mL	25 mL	439774	07/07/23 09:40	S1Z	EET PIT
Total Recoverable	Analysis Instrumer	EPA 6020A at ID: DORY		1			441752	07/27/23 17:04	KED	EET PIT
Total/NA	Analysis Instrumer	SM 2540C at ID: NOEQUIP		1	50 mL	100 mL	435991	05/23/23 20:17	LWM	EET PIT
Total/NA	Analysis Instrumer	Field Sampling at ID: NOEQUIP		1			436880	05/17/23 03:25	FDS	EET PIT

Lab Sample ID: 180-156848-23 Client Sample ID: DUPLICATE

Date Collected: 05/17/23 03:45 **Matrix: Water** Date Received: 05/19/23 09:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	EPA 9056A		1	1 mL	1 mL	435928	05/24/23 01:31	SNL	EET PIT
	Instrumer	t ID: CHICS2100B								
Total Recoverable	Prep	3005A			25 mL	25 mL	439774	07/07/23 09:40	S1Z	EET PIT
Total Recoverable	Analysis	EPA 6020A		1			441752	07/27/23 17:07	KED	EET PIT
	Instrumer	t ID: DORY								
Total/NA	Analysis	SM 2540C		1	100 mL	100 mL	435991	05/23/23 20:17	LWM	EET PIT
	Instrumer	t ID: NOEQUIP								

Laboratory References:

EET PIT = Eurofins Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058 EET SL = Eurofins St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

Analyst References:

Lab: EET PIT

Batch Type: Prep

MTW = Michael Wesoloski

S1Z = Sage Ziviello

Batch Type: Analysis

FDS = Sampler Field

KED = Katie Dacko

LWM = Leslie McIntire

MRG = Mismel Garcia MTW = Michael Wesoloski

SNL = Sean Lordo

Lab: EET SL

Batch Type: Prep

KAC = Kevin Cox

Batch Type: Analysis

EMH = Elizabeth Hoerchler

FLC = Fernando Cruz

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond CCR

Client Sample ID: MW-2 Lab Sample ID: 180-156848-14

Date Collected: 05/17/23 11:40 **Matrix: Water**

Date Received: 05/19/23 09:35

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	110		1.0	0.71	mg/L			05/23/23 22:48	1
Fluoride	0.20		0.10	0.026	mg/L			05/23/23 22:48	1
Sulfate	98		1.0	0.76	mg/L			05/23/23 22:48	1
Method: SW846 EPA 6020A - Me	tals (ICP/	MS) - Total F	Recoverabl	e					
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	28000		500	130	ug/L		07/07/23 09:40	07/14/23 19:21	
Boron	150		80	60	ug/L		07/07/23 09:40	07/14/23 19:21	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	410		10	10	mg/L			05/22/23 17:04	1
Method: EPA Field Sampling - Fi	eld Sam	oling							
Analyte	Result	Qualifier	RL	NONE	Unit	D	Prepared	Analyzed	Dil Fac
pH	5.93				SU			05/17/23 12:40	

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond CCR

Client Sample ID: MW-3 Lab Sample ID: 180-156848-15

Date Collected: 05/17/23 12:15 Date Received: 05/19/23 09:35

Matrix: Water

Job ID: 180-156848-4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	59		1.0	0.71	mg/L			05/23/23 23:03	1
Fluoride	0.16		0.10	0.026	mg/L			05/23/23 23:03	1
Sulfate	490		1.0	0.76	mg/L			05/23/23 23:03	1
Method: SW846 EPA 6020A - Me	tals (ICP/	MS) - Total F	Recoverabl	e					
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Calcium	94000		500	130	ug/L		07/07/23 09:40	07/27/23 16:35	1
Boron	80	^1+ ^- ^+ ^2	80	60	ug/L		07/07/23 09:40	07/27/23 16:35	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	890		10	10	mg/L			05/22/23 17:04	1
Method: EPA Field Sampling - Fi	eld Samp	oling							
Analyte	Result	Qualifier	RL	NONE	Unit	D	Prepared	Analyzed	Dil Fac
Hq Hq	5.82				SU			05/17/23 13:15	

7/28/2023

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond CCR

Client Sample ID: MW-4 Lab Sample ID: 180-156848-16

Date Collected: 05/17/23 10:45 **Matrix: Water**

Date Received: 05/19/23 09:35

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	6.5		2.5	1.8	mg/L			05/23/23 23:18	2.5
Fluoride	0.11	J	0.25	0.065	mg/L			05/23/23 23:18	2.5
Sulfate	560		2.5	1.9	mg/L			05/23/23 23:18	2.5
Method: SW846 EPA 6020A - Me	tals (ICP/	MS) - Total F	Recoverabl	e					
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	240000		500	130	ug/L		07/07/23 09:40	07/27/23 16:38	
Boron	ND	^1+ ^- ^+	80	60	ug/L		07/07/23 09:40	07/27/23 16:38	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	1500		10	10	mg/L			05/22/23 17:04	1
Method: EPA Field Sampling - F	ield Samp	oling							
Analyte	Result	Qualifier	RL	NONE	Unit	D	Prepared	Analyzed	Dil Fac
pH	6.88				SU			05/17/23 11:45	

7/28/2023

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond CCR

Client Sample ID: MW-5

Date Collected: 05/17/23 03:30 Date Received: 05/19/23 09:35

Lab	Sample	ID:	180-1568	48-17

Matrix: Water

Job ID: 180-156848-4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	6.2		1.0	0.71	mg/L			05/23/23 23:33	1
Fluoride	0.30		0.10	0.026	mg/L			05/23/23 23:33	1
Sulfate	150		1.0	0.76	mg/L			05/23/23 23:33	1
Method: SW846 EPA 6020A - Me	tals (ICP/	MS) - Total R	Recoverabl	e					
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	91000		500	130	ug/L		07/07/23 09:40	07/27/23 16:42	1
Boron	250	^1+ ^- ^+ ^2	80	60	ug/L		07/07/23 09:40	07/27/23 16:42	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	590		10	10	mg/L			05/22/23 17:04	1
Method: EPA Field Sampling - Fi	eld Samp	oling							
Analyte	Result	Qualifier	RL	NONE	Unit	D	Prepared	Analyzed	Dil Fac
pH —	7.43				SU			05/17/23 04:30	

7/28/2023

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond CCR

Client Sample ID: MW-5A Lab Sample ID: 180-156848-18 **Matrix: Water**

Date Collected: 05/17/23 10:05 Date Received: 05/20/23 09:30

Method: SW846 EPA 90	56A - Anions, Ion Chromatog	graphy						
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	180	2.5	1.8	mg/L			05/23/23 23:48	2.5
Fluoride	0.26	0.25	0.065	mg/L			05/23/23 23:48	2.5
Sulfato	1700	2.5	19	ma/l			05/23/23 23:48	2.5

Method: SW846 EPA	A 6020A - Metals (ICP/	MS) - Total R	ecoverable	e					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	400000		500	130	ug/L		07/07/23 09:40	07/27/23 16:45	1
Boron	1800	^1+ ^- ^+ ^2	80	60	ug/L		07/07/23 09:40	07/27/23 16:45	1

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	3200	cn	40	40	mg/L			05/23/23 20:17	1
_									

Method: EPA Field Sampling -	Field Sampling							
Analyte	Result Qualifier	RL	NONE	Unit	D	Prepared	Analyzed	Dil Fac
pH	6.94			SU			05/17/23 11:05	1

Job ID: 180-156848-4

Eurofins Pittsburgh

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond CCR

Client Sample ID: MW-5AR

Lab Sample ID: 180-156848-19 Date Collected: 05/17/23 00:00

Matrix: Water

Date Received: 05/20/23 09:30

Ba Carrier

Y Carrier

79.3

81.1

30 - 110

30 - 110

Analyte		Result	Qualifier	RL		MDL	Uni	t	D	Prepared	Analyzed	Dil Fa
Chloride		77		1.0		0.71	mg/	L			05/24/23 00:02	
Fluoride		0.51		0.10		0.026	mg/	L			05/24/23 00:02	
Sulfate		190		1.0		0.76	mg/	L			05/24/23 00:02	
Method: SW846 EPA	6020A -	Metals (ICP/	MS) - Tota	al Recover	able							
Analyte		Result	Qualifier	RL		MDL	Uni	t	D	Prepared	Analyzed	Dil Fa
Antimony		ND		2.0		0.97	ug/L			07/14/23 10:15	07/26/23 23:25	
Arsenic		1.9		1.0		0.28	ug/L	-		07/14/23 10:15	07/26/23 23:25	
Barium		46		10		3.1	ug/L	-		07/14/23 10:15	07/26/23 23:25	
Beryllium		ND		1.0		0.27	ug/L	•		07/14/23 10:15	07/26/23 23:25	
Boron		370	B ^+ ^2 ^6	80		60	ug/L	-		07/14/23 10:15	07/26/23 23:25	
Cadmium		ND		1.0		0.22	ug/L	-		07/14/23 10:15	07/26/23 23:25	
Calcium		77000		500		130	ug/L	-		07/14/23 10:15	07/26/23 23:25	
Chromium		ND		2.0		1.5	ug/L	-		07/14/23 10:15	07/26/23 23:25	
Cobalt		1.3		0.50		0.26	ug/L	-		07/14/23 10:15	07/26/23 23:25	
Lead		ND		1.0		0.38	ug/L			07/14/23 10:15	07/26/23 23:25	
Lithium		100		5.0		1.3	ug/L	-		07/14/23 10:15	07/26/23 23:25	
Molybdenum		1.7	J	5.0		0.61	ug/L	-		07/14/23 10:15	07/26/23 23:25	
Selenium		ND		5.0		0.74	ug/L			07/14/23 10:15	07/26/23 23:25	
Thallium		ND		1.0		0.47	ug/L	-		07/14/23 10:15	07/26/23 23:25	
Analyte Mercury		Result ND	Qualifier	0.00020		MDL 00013			<u>D</u>	Prepared 06/09/23 10:00	Analyzed 06/10/23 11:58	Dil F
General Chemistry												
Analyte		Result	Qualifier	RL		MDL	Uni	t	D	Prepared	Analyzed	Dil F
Total Dissolved Solids (S	SM 2540C	650	cn	10		10	mg/	L		<u> </u>	05/23/23 20:17	
Method: SW846 9315			C) Count	Total								
			Uncert.	Uncert.								
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	ı	MDC	Unit		Prepared	Analyzed	Dil F
Radium-226	0.738		0.302	0.309	1.00	0	.281	pCi/L		05/31/23 09:34	06/22/23 08:22	
Carrier	%Yield	Qualifier	Limits							Prepared	Analyzed	Dil F
Ba Carrier	79.3		30 - 110							05/31/23 09:34	06/22/23 08:22	
Method: SW846 9320	- Radiu	m-228 (GFP	•									
			Count	Total								
			Uncert.	Uncert.								
Analyte		Qualifier	(2σ+/-)	(2σ+/-)	RL			Unit		Prepared	Analyzed	Dil F
Radium-228	1.24		0.585	0.596	1.00	0	.785	pCi/L		05/31/23 09:38	06/21/23 11:31	
Carrier	%Yield	Qualifier	Limits							Prepared	Analyzed	Dil F

05/31/23 09:38 06/21/23 11:31

05/31/23 09:38 06/21/23 11:31

Client: Midwest Environmental Consultants

Job ID: 180-156848-4

Project/Site: Asbury Pond CCR

Client Sample ID: MW-5AR Lab Sample ID: 180-156848-19

Date Collected: 05/17/23 00:00 Matrix: Water Date Received: 05/20/23 09:30

Method: TAL-STL Ra226_Ra2	28 - Combined Radium-226 and Radium-228
---------------------------	---

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium	1.98		0.658	0.671	5.00	0.785	pCi/L		06/23/23 13:17	1
226 + 228										

Method: EPA Field Sampling - Field Sampling

Analyte	Result Qualifier	RL	NONE Unit	D	Prepared	Analyzed	Dil Fac
pH	7.46		SU			05/17/23 01:00	1

3

4

7

Ō

3

11

12

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond CCR

Client Sample ID: MW-6

Date Collected: 05/17/23 08:45 Date Received: 05/19/23 09:35

.ab	Sample	ID:	180-156848-20
			Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	19		2.5	1.8	mg/L			05/24/23 00:17	2.5
Fluoride	0.29		0.25	0.065	mg/L			05/24/23 00:17	2.5
Sulfate	950		2.5	1.9	mg/L			05/24/23 00:17	2.5
Method: SW846 EPA 6020A - Me	tals (ICP/	MS) - Total R	ecoverabl	e					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	250000		500	130	ug/L		07/07/23 09:40	07/27/23 16:56	1
Boron	350	^1+ ^+ ^2	80	60	ug/L		07/07/23 09:40	07/27/23 16:56	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	1900	cn	10	10	mg/L			05/23/23 20:17	1
Method: EPA Field Sampling - F	ield Samp	oling							
Analyte		Qualifier	RL	NONE	Unit	D	Prepared	Analyzed	Dil Fac
pH	7.02				SU			05/17/23 09:45	- 1

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond CCR

Client Sample ID: MW-6A Lab Sample ID: 180-156848-21

Date Collected: 05/17/23 03:00 Date Received: 05/19/23 09:35

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	37		2.5	1.8	mg/L			05/24/23 01:01	2.5
Fluoride	0.27		0.25	0.065	mg/L			05/24/23 01:01	2.5
Sulfate	830		2.5	1.9	mg/L			05/24/23 01:01	2.5
Method: SW846 EPA 6020A - Me	tals (ICP/	MS) - Total R	ecoverabl	е					
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	180000		500	130	ug/L		07/07/23 09:40	07/27/23 17:00	1
Boron	350	^1+ ^+ ^2	80	60	ug/L		07/07/23 09:40	07/27/23 17:00	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	1600		10	10	mg/L			05/23/23 20:17	1
Method: EPA Field Sampling - Fi	eld Samp	oling							
Analyte	Result	Qualifier	RL	NONE	Unit	D	Prepared	Analyzed	Dil Fac
pH	6.85				SU			05/17/23 04:00	

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond CCR

Client Sample ID: MW-7

Date Collected: 05/17/23 02:25 Date Received: 05/19/23 09:35

Lab	Sampl	le ID:	180-156848-22
			Matrice Weter

Matrix: Water

Method: SW846 EPA 9056A - An	ions, Ion	Chromatogra	aphy						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	38		2.5	1.8	mg/L			05/24/23 01:16	2.5
Fluoride	0.17	J	0.25	0.065	mg/L			05/24/23 01:16	2.5
Sulfate	1600		2.5	1.9	mg/L			05/24/23 01:16	2.5
Method: SW846 EPA 6020A - Me	tals (ICP/	MS) - Total R	ecoverabl	е					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	470000		500	130	ug/L		07/07/23 09:40	07/27/23 17:04	1
Boron	290	^1+ ^+ ^2	80	60	ug/L		07/07/23 09:40	07/27/23 17:04	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	2900		20	20	mg/L			05/23/23 20:17	1
Method: EPA Field Sampling - F	ield Samp	oling							
Analyte	Result	Qualifier	RL	NONE	Unit	D	Prepared	Analyzed	Dil Fac
pH	6.51		 -		SU			05/17/23 03:25	1

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond CCR

Client Sample ID: DUPLICATE Lab Sample ID: 180-156848-23

Date Collected: 05/17/23 03:45

Matrix: Water Date Received: 05/19/23 09:35

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	68		1.0	0.71	mg/L			05/24/23 01:31	1
Fluoride	0.38		0.10	0.026	mg/L			05/24/23 01:31	1
Sulfate	170		1.0	0.76	mg/L			05/24/23 01:31	1
Method: SW846 EPA 6020A - Mo	Result	MS) - Total R Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
	•	•		MDL	Unit ug/L	<u>D</u>	Prepared 07/07/23 09:40		Dil Fac
Analyte	Result 89000	•	RL	MDL 130		<u>D</u>		07/27/23 17:07	Dil Fac
Analyte Calcium Boron	Result 89000	Qualifier	RL 500	MDL 130	ug/L	<u>D</u>	07/07/23 09:40	07/27/23 17:07	Dil Fac 1 1
Analyte Calcium	Result 89000 280	Qualifier	RL 500	MDL 130	ug/L ug/L	<u>D</u> D	07/07/23 09:40	07/27/23 17:07	Dil Fac

Client: Midwest Environmental Consultants Project/Site: Asbury Pond CCR

Method: EPA 9056A - Anions, Ion Chromatography

Lab Sample ID: MB 180-435928/41

Matrix: Water

Analysis Batch: 435928

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Chloride ND 1.0 0.71 mg/L 05/23/23 19:06 Fluoride ND 0.10 0.026 mg/L 05/23/23 19:06 Sulfate ND 1.0 0.76 mg/L 05/23/23 19:06

Lab Sample ID: LCS 180-435928/42

Matrix: Water

Analysis Batch: 435928

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	50.0	50.1		mg/L		100	80 - 120	
Fluoride	2.50	2.57		mg/L		103	80 - 120	
Sulfate	50.0	49.6		mg/L		99	80 - 120	

Lab Sample ID: 180-156848-B-3 MS

Matrix: Water

Analysis Batch: 435928

Client Sample ID: Matrix Spike Prep Type: Total/NA

Prep Type: Total/NA

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	18		50.0	67.0		mg/L		99	80 - 120	
Fluoride	0.11		2.50	2.67		mg/L		102	80 - 120	
Sulfate	38		50.0	87.0		mg/L		97	80 - 120	

Lab Sample ID: 180-156848-B-3 MSD

Matrix: Water

Analysis Batch: 435928

Alialysis Datell. 700020												
-	Sample	Sample	Spike	MSD	MSD				%Rec		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Chloride	18		50.0	62.2		mg/L		89	80 - 120	7	15	
Fluoride	0.11		2.50	2.49		mg/L		95	80 - 120	7	15	
Sulfate	38		50.0	80.9		mg/L		85	80 - 120	7	15	

Method: EPA 6020A - Metals (ICP/MS)

Lab Sample ID: MB 180-439774/1-A

Matrix: Water

Analysis Batch: 440797

Client Sample ID: Method Blank
Prep Type: Total Recoverable
Prep Batch: 439774

Client Sample ID: Matrix Spike Duplicate

MB MB Result Qualifier RL **MDL** Unit Dil Fac Analyte Prepared Analyzed 07/07/23 09:40 07/14/23 19:00 Boron ND 80 60 ug/L 07/07/23 09:40 07/14/23 19:00 Calcium ND 500 130 ug/L

Lab Sample ID: MB 180-439774/1-A

Matrix: Water

Analysis Batch: 440914

Client Sample ID: Method Blank **Prep Type: Total Recoverable Prep Batch: 439774**

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	ND		80	60	ug/L		07/07/23 09:40	07/20/23 00:06	1
Calcium	134	J	500	130	ug/L		07/07/23 09:40	07/20/23 00:06	1

Eurofins Pittsburgh

Page 27 of 44

7/28/2023

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond CCR

Method: EPA 6020A - Metals (ICP/MS) (Continued)

Lab Sample ID: MB 180-439774/1-A

Matrix: Water

Analyte

Calcium

Boron

Analysis Batch: 441752

Client Sample ID: Method Blank Prep Type: Total Recoverable Prep Batch: 439774

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample

Client Sample ID: 180-156848-E-19-C MS

Prep Type: Total Recoverable

Prep Type: Total Recoverable

Prep Type: Total Recoverable

Prep Batch: 439774

Job ID: 180-156848-4

MB MB Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac ND ^1+ ^- ^+ 80 60 ug/L 07/07/23 09:40 07/27/23 16:24 130 ug/L ND 500 07/07/23 09:40 07/27/23 16:24

Lab Sample ID: LCS 180-439774/2-A

Matrix: Water

Analysis Batch: 440797

Analysis Batch: 440797							Prep Batch: 4397	74
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Boron	1250	1230		ug/L		98	80 - 120	_
Calcium	25000	26600		ug/L		106	80 - 120	

Lab Sample ID: LCS 180-439774/2-A

Matrix: Water

Analysis Batch: 441752

		Spike	LCS	LCS				%Rec	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
Boron		1250	1030	^1+ ^+	ug/L		82	80 - 120	
Calcium		25000	27000		ug/L		108	80 - 120	

Lab Sample ID: 180-156848-E-19-C MS

Matrix: Water

Analysis Batch: 440797									Prep Batch: 439774	
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Boron	260		1250	1630		ug/L		109	75 - 125	
Calcium	77000		25000	106000		ua/l		115	75 _ 125	

Lab Sample ID: 180-156848-E-19-D MSD

Matrix: Water							, F	rep Ty	pe: Total I	Recove	erable
Analysis Batch: 440797									Prep Ba	atch: 43	39774
-	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Boron	260		1250	1680		ug/L		113	75 - 125	3	20
Calcium	77000		25000	106000		ua/l		118	75 - 125	1	20

Lab Sample ID: LCSD 180-440414/3-A

Matrix: Water

Analysis Batch: 441632

Client Sample ID: Lab Control Sample Dup
Prep Type: Total Recoverable
Prep Batch: 440414

Client Sample ID: 180-156848-E-19-D MSD

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Antimony	250	272		ug/L					
Arsenic	1000	930		ug/L					
Barium	1000	1030		ug/L					
Beryllium	500	533		ug/L					
Cadmium	500	508		ug/L					
Calcium	25000	25300		ug/L					
Chromium	500	509		ug/L					
Cobalt	500	452		ug/L					
Lead	500	533		ug/L					
Lithium	500	521		ua/L					

Eurofins Pittsburgh

Page 28 of 44

Job ID: 180-156848-4

Analyzed

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond CCR

Analyte

Mercury

Total Dissolved Solids

Method: EPA 6020A - Metals (ICP/MS) (Continued)

Lab Sample ID: LCSD 180-440414/3-A	Client Sample ID: Lab Control Sample Dup									
Matrix: Water				F	rep Ty	pe: Total	Recove	erable		
Analysis Batch: 441632							Prep B	atch: 44	40414	
-	Spike	LCSD	LCSD				%Rec		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Molybdenum	500	516		ug/L						
Selenium	1000	977		ug/L						
Thallium	1000	1080		ua/l						

Method: EPA 7470A - Mercury (CVAA)

Lab Sample ID: MB 180-437479/1-A	Client Sample ID: Method Blank
Matrix: Water	Prep Type: Total/NA
Analysis Batch: 437591	Prep Batch: 437479
MB MB	

RL

0.00020

MDL Unit

0.00013 mg/L

Prepared

06/09/23 10:00 06/10/23 11:30

Result Qualifier

ND

Lab Sample ID: LCS 180-437479/2-A Matrix: Water Analysis Batch: 437591	Spike	LCS	LCS	Clie	nt Saı	mple ID	2: Lab Control Sample Prep Type: Total/NA Prep Batch: 437479 %Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Mercury	0.00250	0.00249		mg/L		100	80 - 120

Lab Sample ID: 180-15684	Client Sample ID: Matrix									
Matrix: Water									Prep Typ	e: Total/NA
Analysis Batch: 437591									Prep Ba	tch: 437479
-	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Mercury	ND		0.00100	0.000827		mg/L		83	75 - 125	

Lab Sample ID: 180-156848	Client Sample ID: Matrix Spike Duplicate										
Matrix: Water	Prep Type: Total/										
Analysis Batch: 437591									Prep Ba	atch: 43	37479
-	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Mercury	ND		0.00100	0.000828	-	mg/L		83	75 - 125	0	20

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 180-435872/1	Client Sample ID: Method Blank
Matrix: Water	Prep Type: Total/NA
Analysis Batch: 435872	

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	ND		10	10	mg/L			05/22/23 17:04	1

Lab Sample ID: LCS 180-435872/2 Matrix: Water Analysis Batch: 435872				Clie	ent Sar	nple ID	: Lab Control Sample Prep Type: Total/NA
	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits

584

mg/L

101

85 - 115

580

Eurofins Pittsburgh

7/28/2023

Page 29 of 44

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond CCR

Job ID: 180-156848-4

Method: SM 2540C - Solids, Total Dissolved (TDS) (Continued)

Lab Sample ID: 180-156761-A-5 DU **Client Sample ID: Duplicate** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 435872

DU DU RPD Sample Sample Result Qualifier Result Qualifier RPD Limit Analyte Unit D **Total Dissolved Solids** 1300 1290 mg/L 0.8

Lab Sample ID: 180-156848-A-1 DU **Client Sample ID: Duplicate** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 435872

Sample Sample DU DU **RPD** RPD Result Qualifier Result Qualifier Unit Limit **Total Dissolved Solids** 810 816 mg/L 0.5

Lab Sample ID: MB 180-435991/1 **Client Sample ID: Method Blank Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 435991

MB MB

Result Qualifier RL **MDL** Unit Analyte Prepared Analyzed Dil Fac Total Dissolved Solids ND 10 10 mg/L 05/23/23 20:17

Lab Sample ID: LCS 180-435991/2 **Client Sample ID: Lab Control Sample Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 435991

Spike LCS LCS %Rec Added Analyte Result Qualifier Unit %Rec Limits Total Dissolved Solids 580 572 mg/L 85 - 115

Lab Sample ID: 180-156823-A-2 DU **Client Sample ID: Duplicate** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 435991

DU DU RPD Sample Sample Analyte Result Qualifier RPD Result Qualifier Unit Limit Total Dissolved Solids 471 480 mg/L 0.8

Method: 9315 - Radium-226 (GFPC)

Lab Sample ID: MB 160-613848/1-A Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 617353

Count Total MB MB Uncert. Uncert. Analyte Result Qualifier RL $(2\sigma + / -)$ $(2\sigma + / -)$ MDC Unit Prepared Analyzed Dil Fac Radium-226 0.2086 U 0.191 0.192 1.00 0.299 pCi/L 05/31/23 09:34 06/22/23 08:16

MB MB

Carrier **%Yield Qualifier** Limits Dil Fac Prepared Analyzed 30 - 110 05/31/23 09:34 06/22/23 08:16 Ba Carrier 100

Lab Sample ID: LCS 160-613848/2-A **Client Sample ID: Lab Control Sample**

Matrix: Water Prep Type: Total/NA **Analysis Batch: 617353 Prep Batch: 613848**

Total LCS LCS Spike Uncert. %Rec Analyte Added Result Qual $(2\sigma + / -)$ RL MDC Unit %Rec Limits Radium-226 11.3 9.175 1.14 1.00 0.205 pCi/L 75 - 125

Eurofins Pittsburgh

Prep Batch: 613848

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond CCR

Method: 9315 - Radium-226 (GFPC) (Continued)

	LCS	LCS	
Carrier	%Yield	Qualifier	Limits
Ba Carrier	92.6		30 - 110

Lab Sample ID: LCSD 160-613848/3-A

Matrix: Water

Analysis Batch: 617353

Client Sample I	D: Lab	Control S	Sample D)up
		Prep Typ	e: Total/	NA

Prep Batch: 613848

Job ID: 180-156848-4

				Total						
	Spike	LCSD	LCSD	Uncert.				%Rec		RER
Analyte	Added	Result	Qual	(2σ+/-)	RL	MDC Unit	%Rec	Limits	RER	Limit
Radium-226	11.3	9.974		1.25	1.00	0.269 pCi/L	88	75 - 125	0.33	1

LCSD LCSD

Carrier %Yield Qualifier Limits 85.2 Ba Carrier 30 - 110

Method: 9320 - Radium-228 (GFPC)

Lab Sample ID: MB 160-613850/1-A **Client Sample ID: Method Blank**

Matrix: Water

Analysis Batch: 617160

Prep Type: Total/NA

Prep Batch: 613850

7 many one Date in t									op =atom	• . • • • •
-			Count	Total						
	MB	MB	Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.1072	U	0.275	0.275	1.00	0.485	pCi/L	05/31/23 09:38	06/21/23 11:30	1
	MB	MB								

Carrier %Yield Qualifier Limits Prepared Dil Fac Analyzed 05/31/23 09:38 06/21/23 11:30 Ba Carrier 30 - 110 100 Y Carrier 82.2 30 - 110 05/31/23 09:38 06/21/23 11:30

Lab Sample ID: LCS 160-613850/2-A

Matrix: Water

Analysis Batch: 617000

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 613850

			Total				
	Spike	LCS LCS	Uncert.				%Rec
Analyte	Added	Result Qual	(2σ+/-)	RL	MDC Unit	%Rec	Limits
Radium-228	8.10	8.673	1.24	1.00	0.566 pCi/L	107	75 - 125

LCS LCS

Carrier %Yield Qualifier Limits Ba Carrier 92.6 30 - 110 30 - 110 Y Carrier 80.7

Lab Sample ID: LCSD 160-613850/3-A Client Sample ID: Lab Control Sample Dup

Matrix: Water

Analysis Batch: 617160

Prep Type: Total/NA

Prep Batch: 613850

				iotai						
	Spike	LCSD	LCSD	Uncert.				%Rec		RER
Analyte	Added	Result	Qual	(2σ+/-)	RL	MDC Unit	%Rec	Limits	RER	Limit
Radium-228	8.10	9.754		1.36	1.00	0.576 pCi/L	120	75 - 125	0.42	1

LCSD LCSD

Carrier	%Yield	Qualifier	Limits
Ba Carrier	85.2		30 - 110
Y Carrier	78.9		30 - 110

Eurofins Pittsburgh

QC Association Summary

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond CCR

HPLC/IC

Analysis Batch: 435928

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-156848-14	MW-2	Total/NA	Water	EPA 9056A	
180-156848-15	MW-3	Total/NA	Water	EPA 9056A	
180-156848-16	MW-4	Total/NA	Water	EPA 9056A	
180-156848-17	MW-5	Total/NA	Water	EPA 9056A	
180-156848-18	MW-5A	Total/NA	Water	EPA 9056A	
180-156848-19	MW-5AR	Total/NA	Water	EPA 9056A	
180-156848-20	MW-6	Total/NA	Water	EPA 9056A	
180-156848-21	MW-6A	Total/NA	Water	EPA 9056A	
180-156848-22	MW-7	Total/NA	Water	EPA 9056A	
180-156848-23	DUPLICATE	Total/NA	Water	EPA 9056A	
MB 180-435928/41	Method Blank	Total/NA	Water	EPA 9056A	
LCS 180-435928/42	Lab Control Sample	Total/NA	Water	EPA 9056A	
180-156848-B-3 MS	Matrix Spike	Total/NA	Water	EPA 9056A	
180-156848-B-3 MSD	Matrix Spike Duplicate	Total/NA	Water	EPA 9056A	

Metals

Prep Batch: 437479

Lab Sample ID 180-156848-19	Client Sample ID MW-5AR	Prep Type Total/NA	Matrix Water	Method 7470A	Prep Batch
MB 180-437479/1-A	Method Blank	Total/NA	Water	7470A	
LCS 180-437479/2-A	Lab Control Sample	Total/NA	Water	7470A	
180-156848-D-1-E MS	Matrix Spike	Total/NA	Water	7470A	
180-156848-D-1-F MSD	Matrix Spike Duplicate	Total/NA	Water	7470A	

Analysis Batch: 437591

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-156848-19	MW-5AR	Total/NA	Water	EPA 7470A	437479
MB 180-437479/1-A	Method Blank	Total/NA	Water	EPA 7470A	437479
LCS 180-437479/2-A	Lab Control Sample	Total/NA	Water	EPA 7470A	437479
180-156848-D-1-E MS	Matrix Spike	Total/NA	Water	EPA 7470A	437479
180-156848-D-1-F MSD	Matrix Spike Duplicate	Total/NA	Water	EPA 7470A	437479

Prep Batch: 439774

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-156848-14	MW-2	Total Recoverable	Water	3005A	
180-156848-15	MW-3	Total Recoverable	Water	3005A	
180-156848-16	MW-4	Total Recoverable	Water	3005A	
180-156848-17	MW-5	Total Recoverable	Water	3005A	
180-156848-18	MW-5A	Total Recoverable	Water	3005A	
180-156848-20	MW-6	Total Recoverable	Water	3005A	
180-156848-21	MW-6A	Total Recoverable	Water	3005A	
180-156848-22	MW-7	Total Recoverable	Water	3005A	
180-156848-23	DUPLICATE	Total Recoverable	Water	3005A	
MB 180-439774/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 180-439774/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
180-156848-E-19-C MS	180-156848-E-19-C MS	Total Recoverable	Water	3005A	
180-156848-E-19-D MSD	180-156848-E-19-D MSD	Total Recoverable	Water	3005A	

Eurofins Pittsburgh

Page 32 of 44

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond CCR

Metals

Prep Batch: 440414

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-156848-19	MW-5AR	Total Recoverable	Water	3005A	
LCSD 180-440414/3-A	Lab Control Sample Dup	Total Recoverable	Water	3005A	

Analysis Batch: 440797

Lab Sample ID 180-156848-14	Client Sample ID MW-2	Prep Type Total Recoverable	Matrix Water	Method EPA 6020A	Prep Batch 439774
MB 180-439774/1-A	Method Blank	Total Recoverable	Water	EPA 6020A	439774
LCS 180-439774/2-A	Lab Control Sample	Total Recoverable	Water	EPA 6020A	439774
180-156848-E-19-C MS	180-156848-E-19-C MS	Total Recoverable	Water	EPA 6020A	439774
180-156848-E-19-D MSD	180-156848-E-19-D MSD	Total Recoverable	Water	EPA 6020A	439774

Analysis Batch: 440914

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 180-439774/1-A	Method Blank	Total Recoverable	Water	EPA 6020A	439774

Analysis Batch: 441632

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-156848-19	MW-5AR	Total Recoverable	Water	EPA 6020A	440414
LCSD 180-440414/3-A	Lab Control Sample Dup	Total Recoverable	Water	EPA 6020A	440414

Analysis Batch: 441752

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-156848-15	MW-3	Total Recoverable	Water	EPA 6020A	439774
180-156848-16	MW-4	Total Recoverable	Water	EPA 6020A	439774
180-156848-17	MW-5	Total Recoverable	Water	EPA 6020A	439774
180-156848-18	MW-5A	Total Recoverable	Water	EPA 6020A	439774
180-156848-20	MW-6	Total Recoverable	Water	EPA 6020A	439774
180-156848-21	MW-6A	Total Recoverable	Water	EPA 6020A	439774
180-156848-22	MW-7	Total Recoverable	Water	EPA 6020A	439774
180-156848-23	DUPLICATE	Total Recoverable	Water	EPA 6020A	439774
MB 180-439774/1-A	Method Blank	Total Recoverable	Water	EPA 6020A	439774
LCS 180-439774/2-A	Lab Control Sample	Total Recoverable	Water	EPA 6020A	439774

General Chemistry

Analysis Batch: 435872

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-156848-14	MW-2	Total/NA	Water	SM 2540C	
180-156848-15	MW-3	Total/NA	Water	SM 2540C	
180-156848-16	MW-4	Total/NA	Water	SM 2540C	
180-156848-17	MW-5	Total/NA	Water	SM 2540C	
MB 180-435872/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 180-435872/2	Lab Control Sample	Total/NA	Water	SM 2540C	
180-156761-A-5 DU	Duplicate	Total/NA	Water	SM 2540C	
180-156848-A-1 DU	Duplicate	Total/NA	Water	SM 2540C	

Analysis Batch: 435991

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-156848-18 180-156848-19	MW-5A MW-5AR	Total/NA Total/NA	Water Water	SM 2540C SM 2540C	
180-156848-20	MW-6	Total/NA	Water	SM 2540C	

Eurofins Pittsburgh

7/28/2023

Page 33 of 44

2

Job ID: 180-156848-4

3

1

<u>၂</u>

7

8

10

11

12

QC Association Summary

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond CCR

Job ID: 180-156848-4

General Chemistry (Continued)

Analysis Batch: 435991 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-156848-21	MW-6A	Total/NA	Water	SM 2540C	
180-156848-22	MW-7	Total/NA	Water	SM 2540C	
180-156848-23	DUPLICATE	Total/NA	Water	SM 2540C	
MB 180-435991/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 180-435991/2	Lab Control Sample	Total/NA	Water	SM 2540C	
180-156823-A-2 DU	Duplicate	Total/NA	Water	SM 2540C	

Rad

Prep Batch: 613848

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-156848-19	MW-5AR	Total/NA	Water	PrecSep-21	
MB 160-613848/1-A	Method Blank	Total/NA	Water	PrecSep-21	
LCS 160-613848/2-A	Lab Control Sample	Total/NA	Water	PrecSep-21	
LCSD 160-613848/3-A	Lab Control Sample Dup	Total/NA	Water	PrecSep-21	

Prep Batch: 613850

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-156848-19	MW-5AR	Total/NA	Water	PrecSep_0	-
MB 160-613850/1-A	Method Blank	Total/NA	Water	PrecSep_0	
LCS 160-613850/2-A	Lab Control Sample	Total/NA	Water	PrecSep_0	
LCSD 160-613850/3-A	Lab Control Sample Dup	Total/NA	Water	PrecSep_0	

Field Service / Mobile Lab

Analysis Batch: 436880

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-156848-14	MW-2	Total/NA	Water	Field Sampling	
180-156848-15	MW-3	Total/NA	Water	Field Sampling	
180-156848-16	MW-4	Total/NA	Water	Field Sampling	
180-156848-17	MW-5	Total/NA	Water	Field Sampling	
180-156848-18	MW-5A	Total/NA	Water	Field Sampling	
180-156848-19	MW-5AR	Total/NA	Water	Field Sampling	
180-156848-20	MW-6	Total/NA	Water	Field Sampling	
180-156848-21	MW-6A	Total/NA	Water	Field Sampling	
180-156848-22	MW-7	Total/NA	Water	Field Sampling	

Page 34 of 44

A No bottles were supplied for
field blank

(xa) I liter bottles for radium analysis

for MW-6 do not have preservative

r,

Chain of Custody Record

Eurofins Pittsburgh 301 Alpha Drive RIDC Park Pittsburgh, PA 15238 Phone: 412-963-7058 Fax: 412-963-2468	Chain of	Chain of Custody Record	cord					💸 eurofins	Environment Testin
Client Information (Sub Contract Lab)	Sampler	Lab PM Johnso	Lab PM: Johnson, Andv			Carrier Tracking No(s)	No(s):	COC No: 180-487721 1	
Client Contact Shipping/Receiving	Phone:	E-Mail: Andv.J	Johnson	Det.euro	E-Mail: Andy.Johnson@et.eurofinsus.com	State of Origin: Missouri		Page:	
Сомралу. TestAmerica Laboratories, Inc.		¥	ccreditation	s Require	Accreditations Required (See note):			Job #:	
Address 13715 Rider Trail North,	Due Date Requested: 5/29/2023				Analysis Requested	eduested		Preservation Codes	les:
City.	TAT Requested (days):							A - HCL B - NaOH	N - None O - AsNaO2
State, Ztp MO, 63045			ţsi.	ţs				C - Zn Acetate D - Nitric Acid E - NaHSO4	P - Na2O4S Q - Na2SO3
Phone: 314-298-8566(Tel) 314-298-8757(Fax)	PO#			rget Li				F - MeOH G - Amchior	R - NazSzO3 S - H2SO4 T - TSP Dodecahydrate
Email:	WO#:	ON 10	(0)	sT bisi					U - Acetone V - MCAA
Project Name: Asbury Pond NPDES	Project #: 18023389	597) 6	10 8	Stanc			aouje,	K - EDTA L - EDA	vv - pri 4-5 Y - Trizma Z - other (specify)
Site	SSOW#:	Jumes	SD (Ye				juos je	Other:	
	Sample	Sample Matrix of Type (Wingle III Second).	MSM morn	919\822&8_0s	226Ka228_GF		, Jodania Je	tal Number o	
Sample Identification - Client ID (Lab ID)	Sample Date Time (ন	9d)	+	BU		01/		Special Instructions/Note:
MW-2 (180-156848-14)	+	Water	×	×	×			Historical Review	Historical Review required; Run once,
MW-3 (180-156848-15)	5/17/23 Cantral	Water	×	×	×				upload twice Historical Review required, Run once,
MW-4 (180-156848-16)	5/17/23 Central	Water	×	×	×				upload twice Historical Review required; Run once,
MW-5 (180-156848-17)	5/17/23 03:30	Water	×	×	×			_	upload twice Historical Review required; Run once,
MW-5A (180-156848-18)	5/17/23 Central	Water	×	×	×			Historical Review	Upload twice Historical Review required; Run once,
MW-5AR (180-156848-19)	5/17/23 Central	Water	×	×	×			Historical Review	Historical Review required, Run once,
MW-6 (180-156848-20)	5/17/23 08:45 Central	Water	×	×	×			Historical Review	Historical Review required; Run once, unload twice
MW-6A (180-156848-21)	5/17/23 03:00 Central	Water	×	×	×			2 Historical Review	Historical Review required; Run once, unload twice
MW-7 (180-156848-22)	5/17/23 02:25 Central	Water	×	×	×			2 Historical Review upload twice	Historical Review required; Run once, upload twice
Note: Since laboratory accreditations are subject to change, Eurofins Pittsburgh places the ownership of method, analyte & accreditation compliance upon our subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently maintain accreditation in the State of Origin listed above for analysis/tests/matrix being analyzed, the samples must be shipped back to the Eurofins Pittsburgh laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins Pittsburgh attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said compliance to Eurofins Pittsburgh.	In places the ownership of method, analyte rix being analyzed, the samples must be she the signed Chain of Custody attesting to s	& accreditation compliance upipped back to the Eurofins Prisad compliance to Eurofins Pisad Compliance Eurofins Pisad Co	pon our suk ttsburgh lab ittsburgh.	contract I	aboratories. This samp other instructions will b	e shipment is forwari e provided. Any char	ded under chain-of- nges to accreditation	custody. If the laboraton status should be brou	ny does not currently ght to Eurofins Pittsburgh
Possible Hazard Identification			Sample	Dispo	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month	assessed if san	nples are retain	ned longer than 1	month)
Unconfirmed Deliverable Reminested: 1 11 11/10 Other (specific)	Orimon Dollarovillo Dareming		֓֟֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֟֟֓֓֓֟֟֓֓֓֓֟֓֓֓֓֟֓֓֟֓֓֟	eturn T	Return To Client	Disposal By Lab	Arc	Archive For	Months
Centrel age inequested. I, II, III, IV, Oille! (Specify)	riillaly Delivelable Kank. 2		Special	Instruct	Special Instructions/QC Requirements				
Empty Kit Relinquished by:	Date:		Time:			Method of Shipment:	hipment		
Keinquished by:	S/25/73/73	Company		Received by:	FED EX		Date/Time:		Company
FED EX	Date: Tittle:	Company		Received by:	a Worthington	Ж	MAY"2 6	2023 0856	Company
	Date/Time:	Company	Rece	Received by:			Date/Time:		Company
Custody Seals Intact: Custody Seal No.:			C001	er Tempe	Cooler Temperature(s) °C and Other Remarks	emarks			

Ver: 06/08/2021

🔆 eurofins

Carrier Tracking No(s)

Chain of Custody Record

Phone: 412-963-7058 Fax: 412-963-2468

Eurofins Pittsburgh

301 Alpha Drive RIDC Park

Pittsburgh, PA 15238

N - None
O - AsNaO2
P - Na2O4S
Q - Na2SO3
R - Na2S203
S - H2SO4
I - TSP Doecahydrate
U - Acetone Note: Since laboratory accreditations are subject to change, Eurofins Pittsburgh places the ownership of method, analyte & accreditation compliance upon our subcontract laboratory accreditation in the State of Origin listed above for analysis/lests/matrix being analyzed, the samples must be shipped back to the Eurofins Pittsburgh laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins Pittsburgh attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said compliance to Eurofins Pittsburgh. Company Historical Review required; Run once, upload twice Special Instructions/Note: Z - other (specify) V - MCAA W - pH 4-5 Months Y - Trizma Sompany Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mont Preservation Codes H - Ascorbic Acid I - Ice J - DI Water K - EDTA L - EDA COC No: 180-487721.2 180-156848-3 C - Zn Acetate D - Nitric Acid E - NaHSO4 F - MeOH G - Amchlor Page: Page 2 of 2 A - HCL B - NaOH 2 Total Number of containers 9 MAY Yme 2 Date/Time Method of Shipment: Worthington State of Origin Missouri **Analysis Requested** Cooler Temperature(s) °C and Other Remarks Special Instructions/QC Requirements: EDEX Lab PM: Johnson, Andy E-Mail Andy Johnson@et.eurofinsus.com Accreditations Required (See note) Serve Razz6Razz8_GFPC Received by: Received by × 9320_Ra228/PrecSep_0 Standard Target List 315_Ra226/PrecSep_21 Standard Target List Perform MS/MSD (Yes or No) Company ESIGNZ ime: (Wewater, Sesolid, Oewaste/oil, ST=Tissue, A=Ai Matrix Preservation Code: Water Company (C=comp, G=grab) Sample Type 257257 Primary Deliverable Rank: 2 Sample 03:45 Central Time Date (AT Requested (days): Due Date Requested: 5/29/2023 Sample Date 5/17/23 Project # 18023389 Date/Time: # O/V Client Information (Sub Contract Lab) Deliverable Requested: I, II, III, IV, Other (specify) FED EX Custody Seal No. Sample Identification - Client ID (Lab ID) 314-298-8566(Tel) 314-298-8757(Fax) Possible Hazard Identification TestAmerica Laboratories, Inc. DUPLICATE (180-156848-23) Empty Kit Relinquished by: Address: 13715 Rider Trail North, Custody Seals Intact: Asbury Pond NPDES △ Yes △ No Shipping/Receiving Unconfirmed Relinquished by: elinquished by inquished by: State, Zip. MO, 63045 City: Earth City

Eurofins Pittsburgh 301 Alpha Drive RIDC Park Pittsburgh, PA 15238 Phone: 412-963-7058 Fax: 412-963-2468	Chain of Cu	Chain of Custody Record		🔆 eurofins	Environment Testing
Client Information (Sub Contract Lab)	Sampler:	Lab PM: Johnson, Andy	Carrier Tracking No(s)	ng No(s): COC No: 180-487721 1	
	Phone:	E-Mari: Andv.Johnson@et.eurofinsus.com	State of Origin	Page:	
Company: TestAmerica Laboratories, Inc.		Accreditations Required (See note)]	Job # Job #	
Address: 13715 Rider Trail North,	Due Date Requested: 5/29/2023		Analysis Requested		
City. Earth City	TAT Requested (days):	3-11			M - nexane V - None J - AsNaO2
State, Zip MO, 63045	· · · · ·			C - Zn Acetate C - Nitric Acid D - Nitric Acid E - NaHSO4	P - Na204S Q - Na2SO3
Phone: 314-298-8566(Tel) 314-298-8757(Fax)	PO #	arget L			X - Nazszos S - H2SO4 F - TSP Dodecahydrate
	WO#:	(o) T bisbi		1 - Ice J - DI Water	J - Acetone / - MCAA
Project Name. Asbury Pond CCR	Project #: 18023389	1 10 25 nat2 15		K - EDTA L - EDA	v - pri 4-3 r - Trizma z - other (specify)
Site	SSOW#:	cSep_c cSep_s		Other:	
Sample Identification - Client ID (Lab ID)	Sample Date Time G=cran)	Matrix Matrix Matrix O STATE STATE Get of The Filtered 5 STATE O STATE		otsal Number o	
	\setminus	ation Code:			Special instructions/Note:
MMM/-54B (180-156848-10)		,		Historical Review required Run once	uired: Run once
(100-100040-19)	5/17/23 Central	Water		3 instance in the second secon	duied, hall office,
Note. Since laboratory accreditations are subject to change. Eurofins Pittsburgh places the ownership of method, analyte & accreditation compliance upon our subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently maintain accreditation in the State of Origin listed above for analysis/lests/marity being analyzed, the samples must be shipped back to the Eurofins Pittsburgh laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins Pittsburgh attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said compliance to Eurofins Pittsburgh.	places the ownership of method, analyte & accretering analyzed, the samples must be shipped by re signed Chain of Custody attesting to said com	ditation compliance upon our subcontract lab ack to the Eurofins Pittsburgh laboratory or o pliance to Eurofins Pittsburgh.	oratories. This sample shipment is for her instructions will be provided. Any or	warded under chain-of-custody. If the laboratory or changes to accreditation status should be brought	does not currently to Eurofins Pittsburgh
Possible Hazard Identification		Sample Dispose	I (A fee may be assessed if :	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	onth)
Uncontirmed Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliverable Rank: 2	Special Instructions/QC	Special Instructions/QC Requirements	ab Archive For	Months
Empty Kit Relinguished by:	Date:	Time	Г	Method of Shinment:	
Relinquished by.	me:	Company Received by:	EED EX		Company
Relinquished by:	5 (25/23/1 00 Date/Time:	Company Rebayed by:	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 2023 080	Company
	Date/Time:	Company Received by:	Sub	200000000000000000000000000000000000000	Company
Custody Seals Intact: Custody Seal No.:		Cooler Temperal	Cooler Temperature(s) °C and Other Remarks:		

Login Sample Receipt Checklist

Client: Midwest Environmental Consultants

Job Number: 180-156848-4

Login Number: 156848 List Source: Eurofins Pittsburgh

List Number: 1

Creator: Abernathy, Eric L

,		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	False	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

2

4

5

0

ŏ

10

4.6

Login Sample Receipt Checklist

Client: Midwest Environmental Consultants

Job Number: 180-156848-4

Login Number: 156848 List Source: Eurofins Pittsburgh

List Number: 2

Creator: Watson, Debbie

Creator. Watson, Debbie		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	False	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

4

9

11

12

Login Sample Receipt Checklist

Client: Midwest Environmental Consultants

Job Number: 180-156848-4

Login Number: 156848 List Source: Eurofins St. Louis
List Number: 4 List Creation: 05/26/23 03:38 PM

Creator: Worthington, Sierra M

Creator. Worthington, Sierra W		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	N/A	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	Preserved upon arrival
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is 6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

3

4

6

8

10

11

12

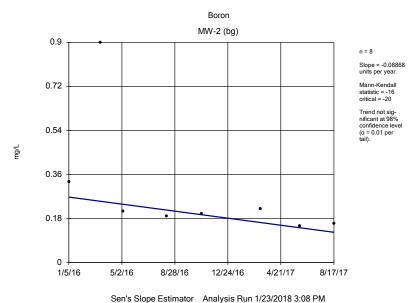
Client: Midwest Environmental Consultants

Job Number: 180-156848-4

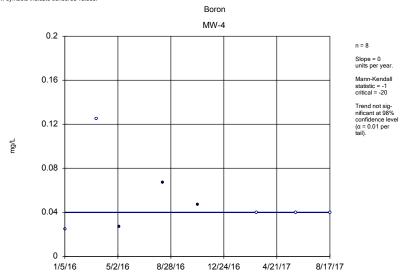
Login Number: 156848 List Source: Eurofins St. Louis
List Number: 5 List Creation: 06/01/23 12:58 PM

Creator: Sharkey-Gonzalez, Briana L

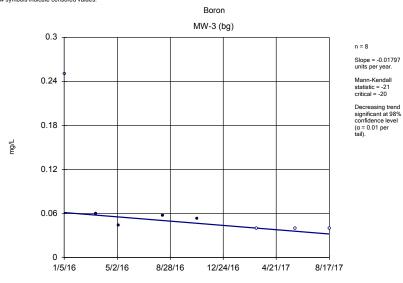
Creator: Snarkey-Gonzalez, Briana L		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	N/A	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	


APPENDIX 5

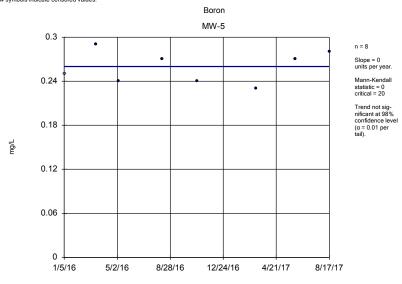
Statistical Analysis


Sanitas[™] Output – Background

Trending Analysis

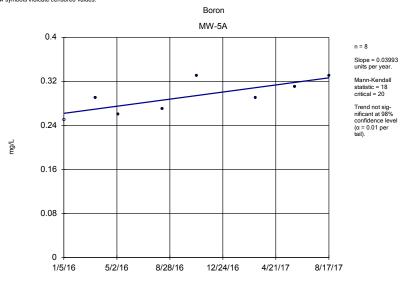

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM


Sanitas $^{\text{™}}$ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

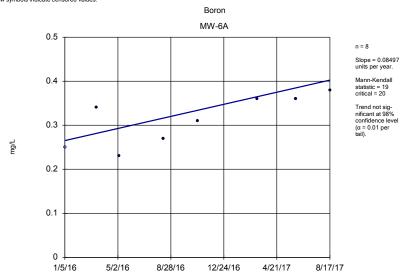
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

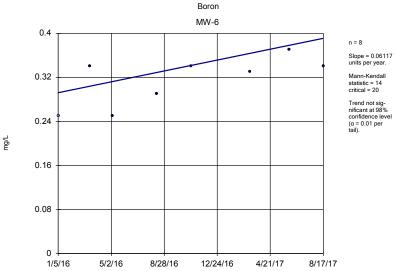

Sanitas $^{\text{IM}}$ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

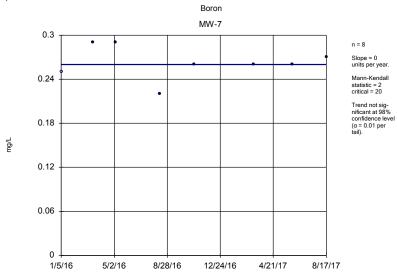
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM


The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

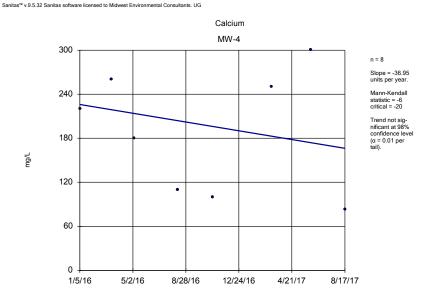
Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM


 $Sanitas \ ^{w}v.9.5.32\ Sanitas\ software\ licensed\ to\ Midwest\ Environmental\ Consultants.\ UG\ Hollow\ symbols\ indicate\ censored\ values.$

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

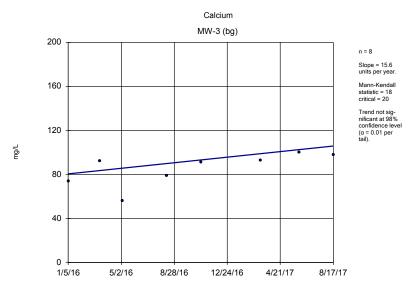
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

Sanitas $^{\text{™}}$ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

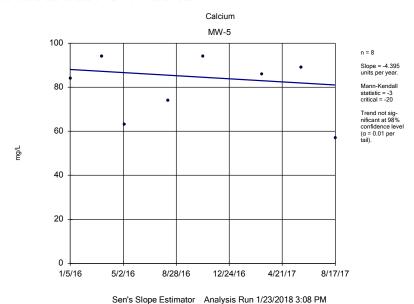


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

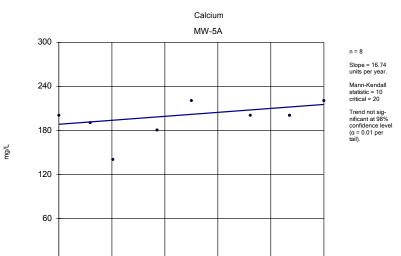
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3



The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3



Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

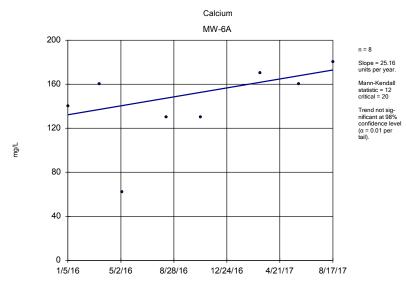
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

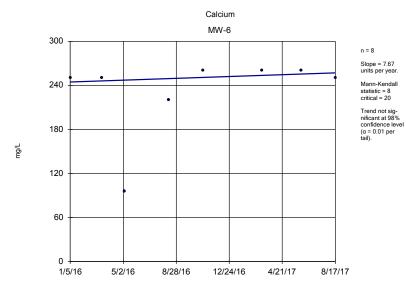
8/28/16

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

12/24/16

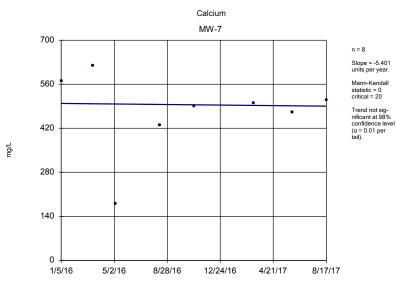

4/21/17

8/17/17

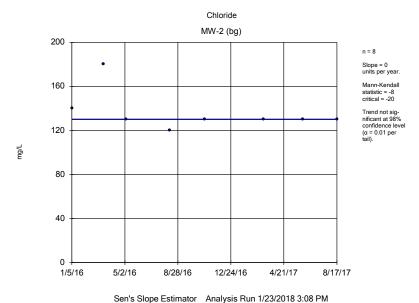

1/5/16

5/2/16

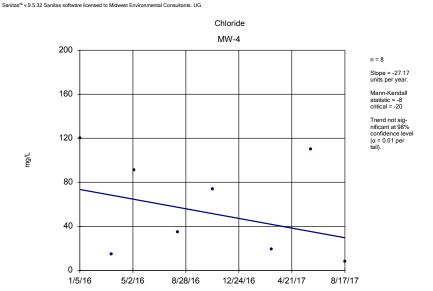
Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM


Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

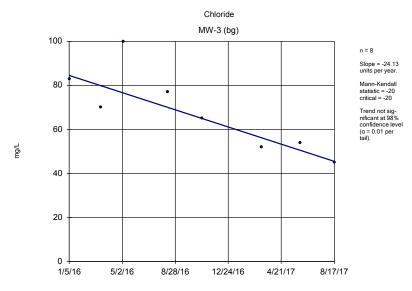

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG

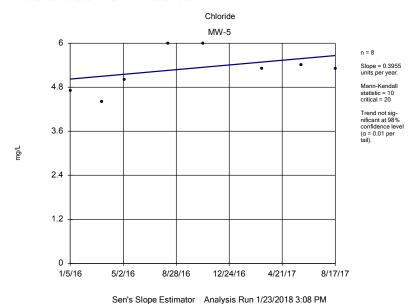


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

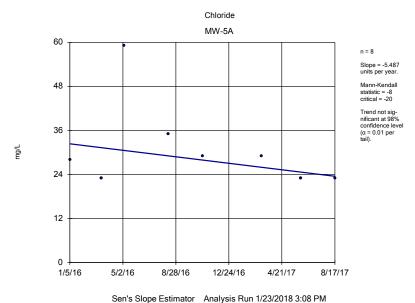
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3



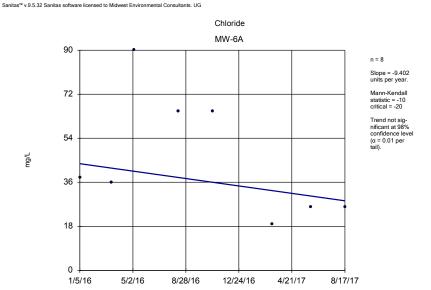
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

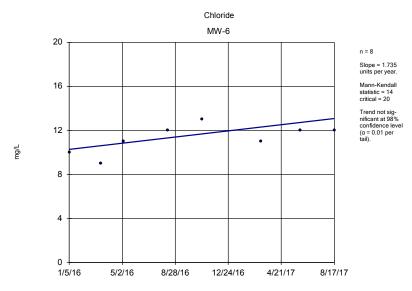
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3



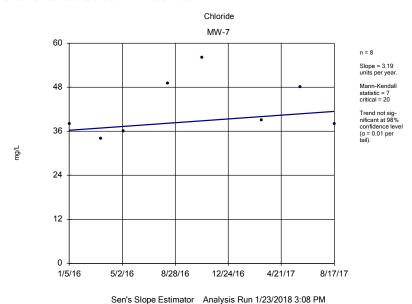
Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM


The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

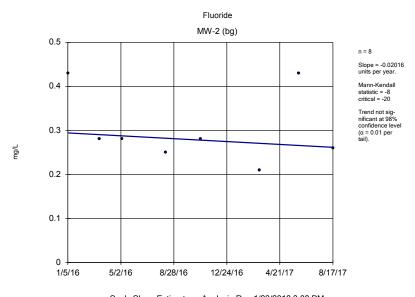
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3



The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

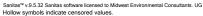

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

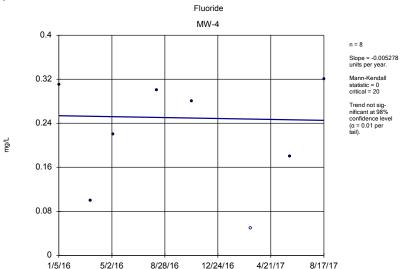
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

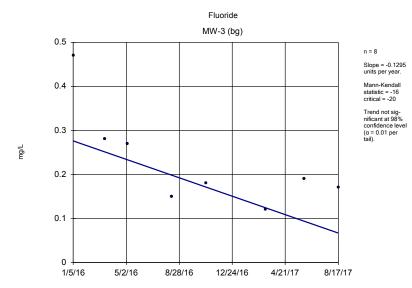


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

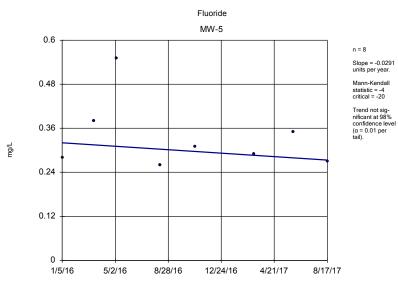
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3



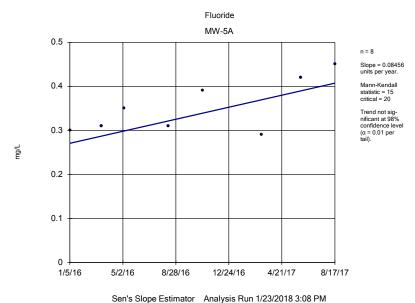

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

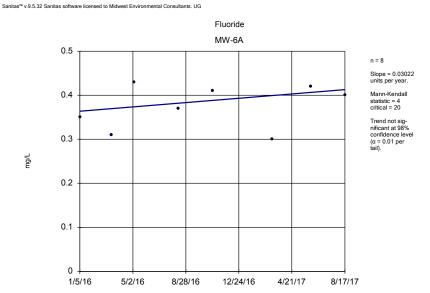
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

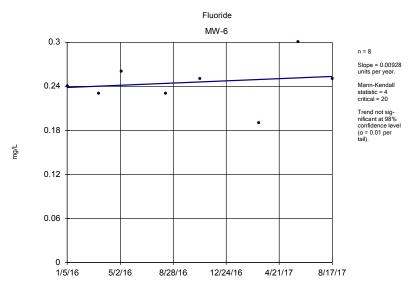

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG



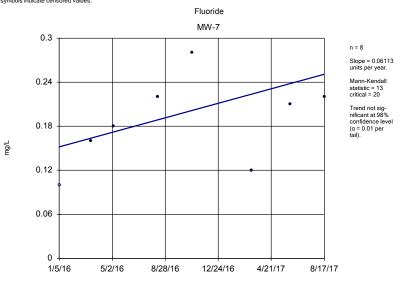
Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

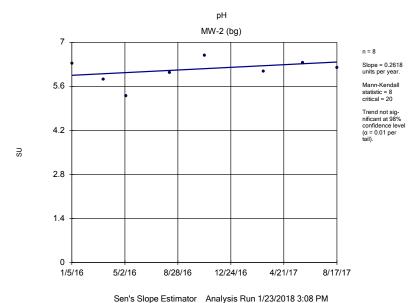


The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

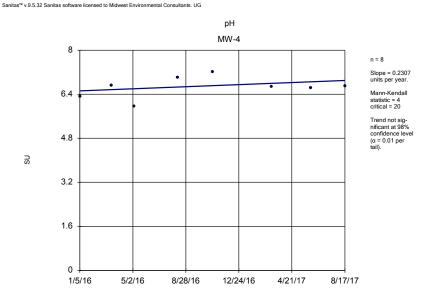
Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM


The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

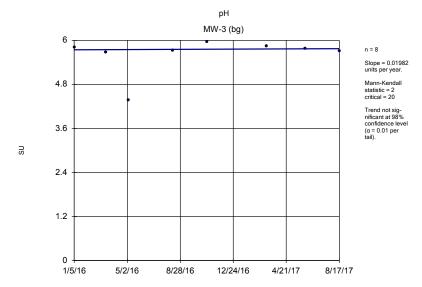

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

Sanitas $^{\text{\tiny{IM}}}$ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

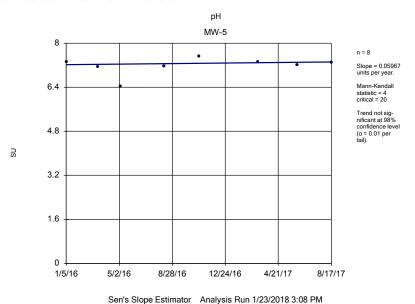


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

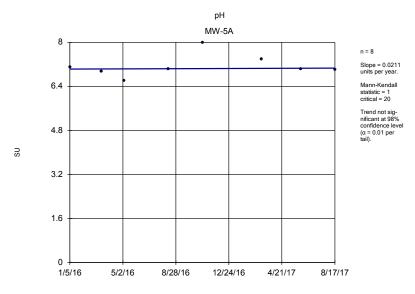
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3



The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

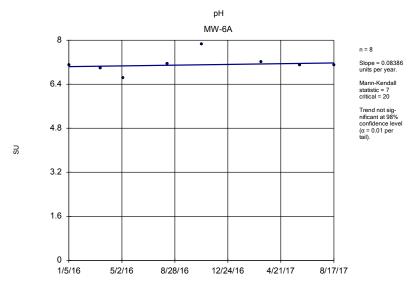

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

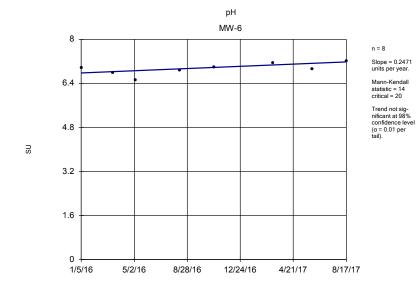
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3



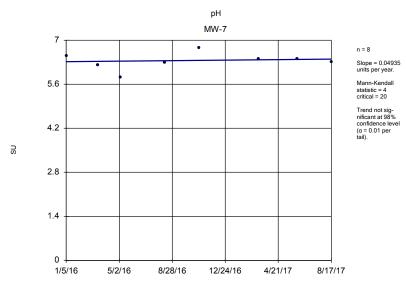
Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

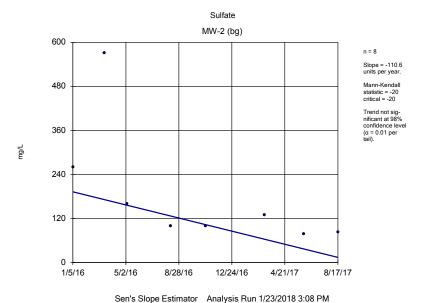

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

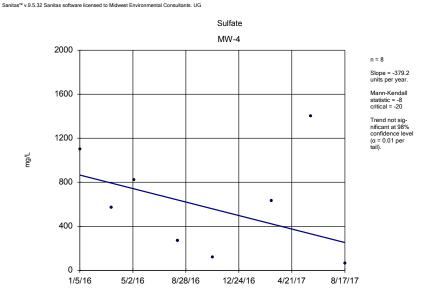
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

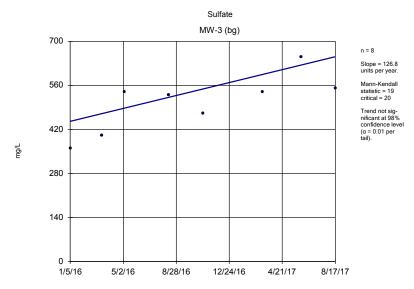

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG

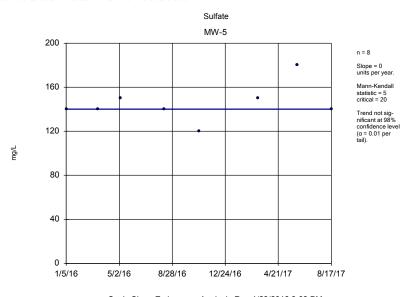


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

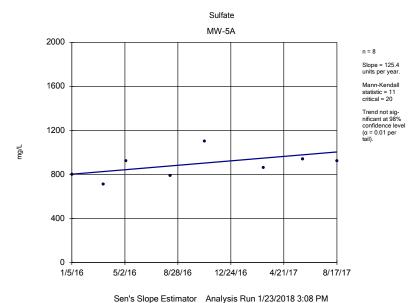
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3



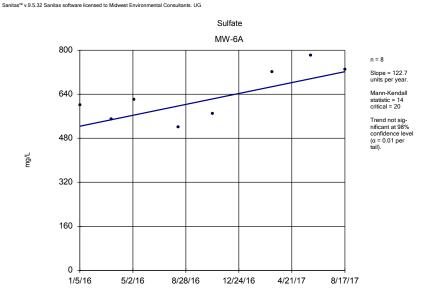
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3



Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

2000

1600

1200

1200

1200

800

400

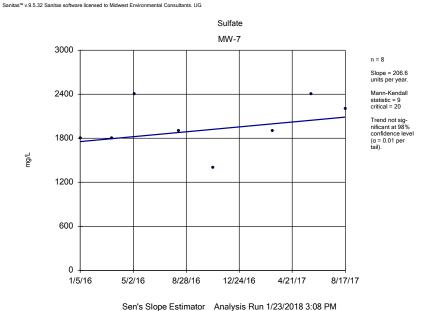
8/28/16

Sulfate

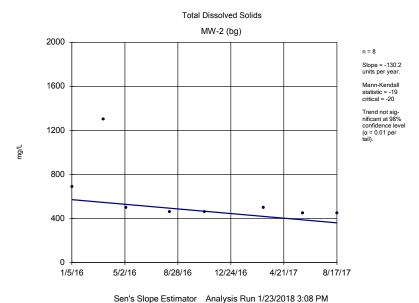
MW-6

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

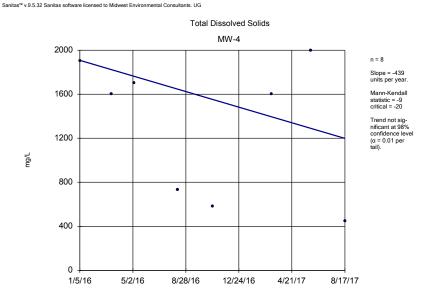
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


12/24/16

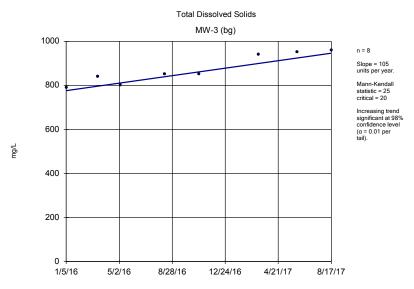
4/21/17


8/17/17

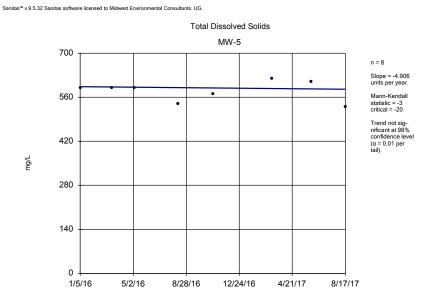
1/5/16


5/2/16

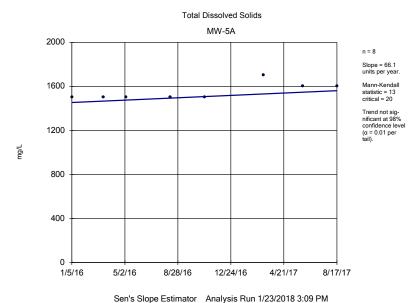
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3



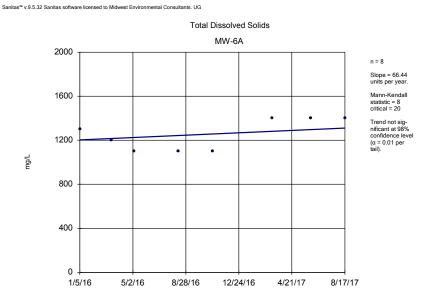
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

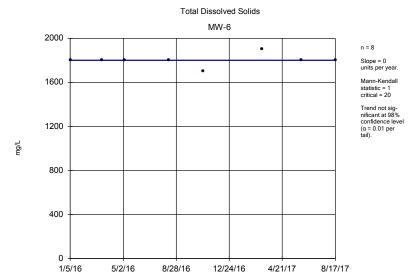

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

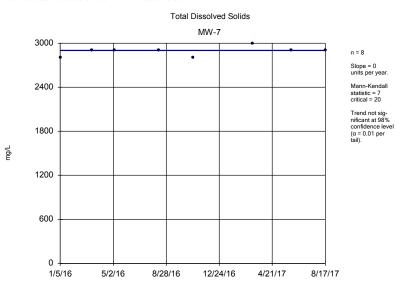


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3



The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

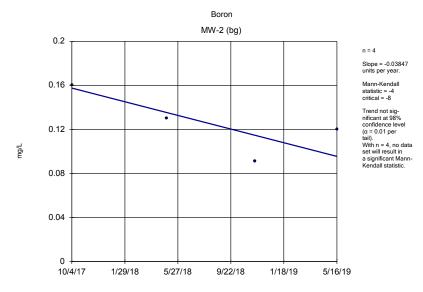

Sen's Slope Estimator Analysis Run 1/23/2018 3:09 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

Sen's Slope Estimator Analysis Run 1/23/2018 3:09 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

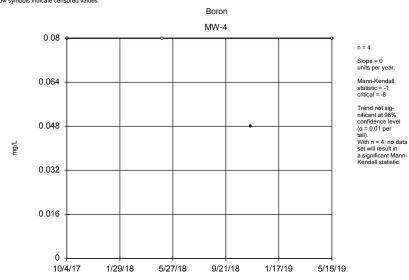
Sen's Slope Estimator Analysis Run 1/23/2018 3:09 PM


The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

Trend Test

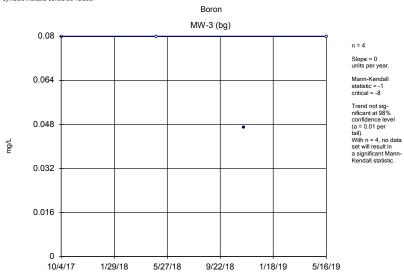
The	e Empire District	Client: Midwest Environmental Consultants			Data: Asbury CCR Impoundments GW Baseline Database - App 3 only					Printed 1/23/2018, 3:10 PM			
Constituent		<u>Well</u>	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method	
Boron (mg/L)		MW-2 (bg)	-0.08868	-16	-20	No	8	0	n/a	n/a	0.02	NP	
Boron (mg/L)		MW-3 (bg)	-0.01797	-21	-20	Yes	8	50	n/a	n/a	0.02	NP	
Boron (mg/L)		MW-4	0	-1	-20	No	8	62.5	n/a	n/a	0.02	NP	
Boron (mg/L)		MW-5	0	0	20	No	8	12.5	n/a	n/a	0.02	NP	
Boron (mg/L)		MW-5A	0.03993	18	20	No	8	12.5	n/a	n/a	0.02	NP	
Boron (mg/L)		MW-6	0.06117	14	20	No	8	12.5	n/a	n/a	0.02	NP	
Boron (mg/L)		MW-6A	0.08497	19	20	No	8	12.5	n/a	n/a	0.02	NP	
Boron (mg/L)		MW-7	0	2	20	No	8	12.5	n/a	n/a	0.02	NP	
Calcium (mg/L)		MW-2 (bg)	-0.8333	-2	-20	No	8	0	n/a	n/a	0.02	NP	
Calcium (mg/L)		MW-3 (bg)	15.6	18	20	No	8	0	n/a	n/a	0.02	NP	
Calcium (mg/L)		MW-4	-36.95	-6	-20	No	8	0	n/a	n/a	0.02	NP	
Calcium (mg/L)		MW-5	-4.395	-3	-20	No	8	0	n/a	n/a	0.02	NP	
Calcium (mg/L)		MW-5A	16.74	10	20	No	8	0	n/a	n/a	0.02	NP	
Calcium (mg/L)		MW-6	7.67	8	20	No	8	0	n/a	n/a	0.02	NP	
Calcium (mg/L)		MW-6A	25.16	12	20	No	8	0	n/a	n/a	0.02	NP	
Calcium (mg/L)		MW-7	-5.401	0	20	No	8	0	n/a	n/a	0.02	NP	
Chloride (mg/L)		MW-2 (bg)	0	-8	-20	No	8	0	n/a	n/a	0.02	NP	
Chloride (mg/L)		MW-3 (bg)	-24.13	-20	-20	No	8	0	n/a	n/a	0.02	NP	
Chloride (mg/L)		MW-4	-27.17	-8	-20	No	8	0	n/a	n/a	0.02	NP	
Chloride (mg/L)		MW-5	0.3955	10	20	No	8	0	n/a	n/a	0.02	NP	
Chloride (mg/L)		MW-5A	-5.487	-8	-20	No	8	0	n/a	n/a	0.02	NP	
Chloride (mg/L)		MW-6	1.735	14	20	No	8	0	n/a	n/a	0.02	NP	
Chloride (mg/L)		MW-6A	-9.402	-10	-20	No	8	0	n/a	n/a	0.02	NP	
Chloride (mg/L)		MW-7	3.19	7	20	No	8	0	n/a	n/a	0.02	NP	
Fluoride (mg/L)		MW-2 (bg)	-0.02016	-8	-20	No	8	0	n/a	n/a	0.02	NP	
Fluoride (mg/L)		MW-3 (bg)	-0.1295	-16	-20	No	8	0	n/a	n/a	0.02	NP	
Fluoride (mg/L)		MW-4	-0.00	0	20	No	8	12.5	n/a	n/a	0.02	NP	
Fluoride (mg/L)		MW-5	-0.0291	-4	-20	No	8	0	n/a	n/a	0.02	NP	
Fluoride (mg/L)		MW-5A	0.08456	15	20	No	8	0	n/a	n/a	0.02	NP	
Fluoride (mg/L)		MW-6	0.00928	4	20	No	8	0	n/a	n/a	0.02	NP	
Fluoride (mg/L)		MW-6A	0.03022	4	20	No	8	0	n/a	n/a	0.02	NP	
Fluoride (mg/L)		MW-7	0.06113	13	20	No	8	12.5	n/a	n/a	0.02	NP	
pH (SU)		MW-2 (bg)	0.2618	8	20	No	8	0	n/a	n/a	0.02	NP	
pH (SU)		MW-3 (bg)	0.01982	2	20	No	8	0	n/a	n/a	0.02	NP	
pH (SU)		MW-4	0.2307	4	20	No	8	0	n/a	n/a	0.02	NP	
pH (SU)		MW-5	0.05967	4	20	No	8	0	n/a	n/a	0.02	NP	
pH (SU)		MW-5A	0.0211	1	20	No	8	0	n/a	n/a	0.02	NP	
pH (SU)		MW-6	0.2471	14	20	No	8	0	n/a	n/a	0.02	NP	
pH (SU)		MW-6A	0.08386	7	20	No	8	0	n/a	n/a	0.02	NP	
pH (SU)		MW-7	0.04935	4	20	No	8	0	n/a	n/a	0.02	NP	
Sulfate (mg/L)		MW-2 (bg)	-110.6	-20	-20	No	8	0	n/a	n/a	0.02	NP	
Sulfate (mg/L)		MW-3 (bg)	126.8	19	20	No	8	0	n/a	n/a	0.02	NP	
Sulfate (mg/L)		MW-4	-379.2	-8	-20	No	8	0	n/a	n/a	0.02	NP	
Sulfate (mg/L)		MW-5	0	5	20	No	8	0	n/a	n/a	0.02	NP	
Sulfate (mg/L)		MW-5A	125.4	11	20	No	8	0	n/a	n/a	0.02	NP	
Sulfate (mg/L)		MW-6	46.31	6	20	No	8	0	n/a	n/a	0.02	NP	
Sulfate (mg/L)		MW-6A	122.7	14	20	No	8	0	n/a	n/a	0.02	NP	
Sulfate (mg/L)		MW-7	206.6	9	20	No	8	0	n/a	n/a	0.02	NP	
Total Dissolved Solids (mg/L)		MW-2 (bg)	-130.2	-19	-20	No	8	0	n/a	n/a	0.02	NP	
Total Dissolved Solids (mg/L)		MW-3 (bg)	105	25	20	Yes	8	0	n/a	n/a	0.02	NP	


Trend Test

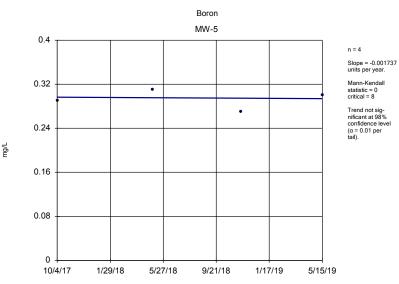

	The Empire District	Client: Midwest Environmental Consultants			Data: Asbury CCR Impoundments GW Baseline Database - App 3 only						Printed 1/23/2018, 3:10 PM		
Constituent		<u>Well</u>	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method	
Total Dissolved Solids (mg/L)		MW-4	-439	-9	-20	No	8	0	n/a	n/a	0.02	NP	
Total Dissolved Solids (mg/L)		MW-5	-4.906	-3	-20	No	8	0	n/a	n/a	0.02	NP	
Total Dissolved Solids (mg/L)		MW-5A	66.1	13	20	No	8	0	n/a	n/a	0.02	NP	
Total Dissolved Solids (mg/L)		MW-6	0	1	20	No	8	0	n/a	n/a	0.02	NP	
Total Dissolved Solids (mg/L)		MW-6A	66.44	8	20	No	8	0	n/a	n/a	0.02	NP	
Total Dissolved Solids (mg/L)		MW-7	0	7	20	No	8	0	n/a	n/a	0.02	NP	

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

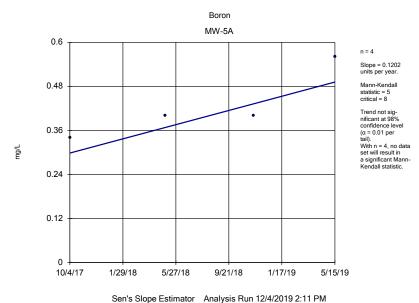
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background



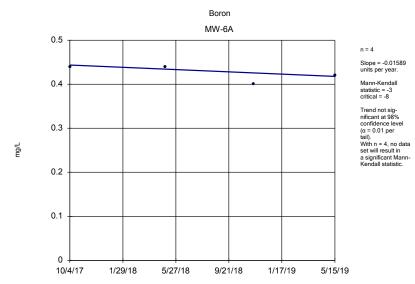
Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM


The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

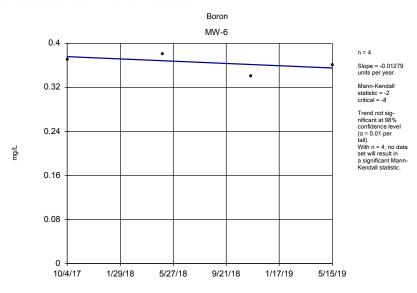
Sanitas $^{\text{™}}$ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

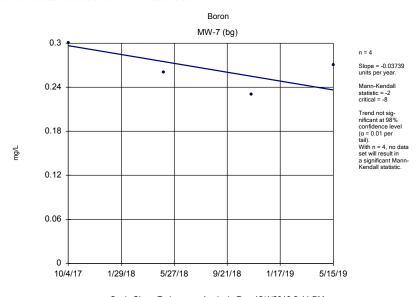

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

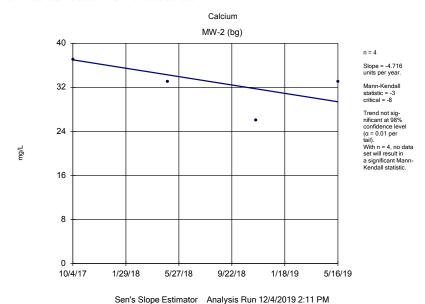

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

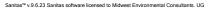

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

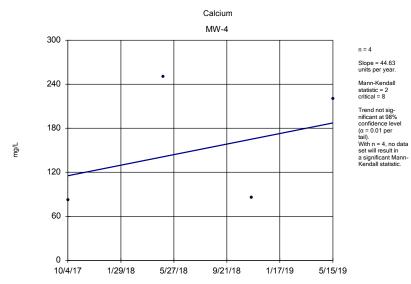

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

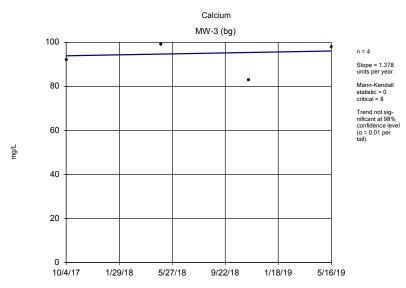

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

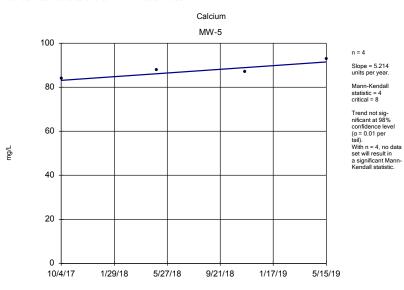
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background




Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

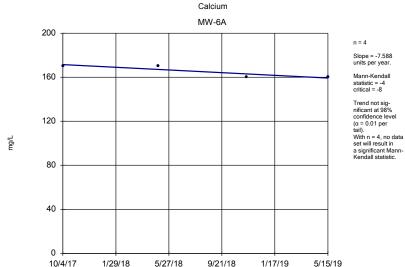

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

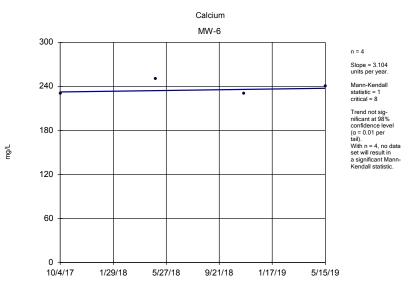
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

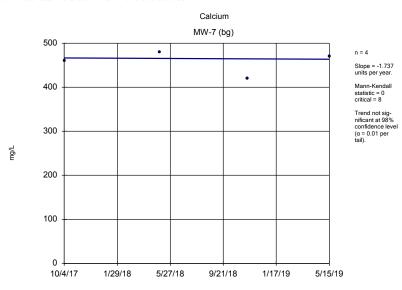

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

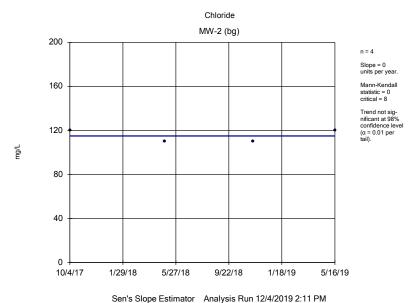

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

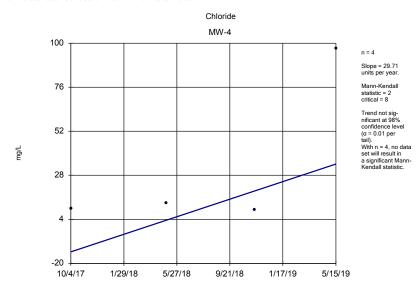

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

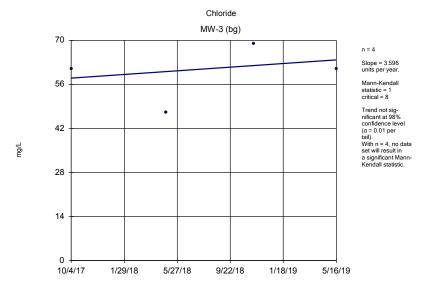
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

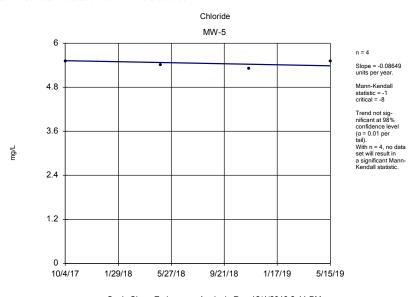

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

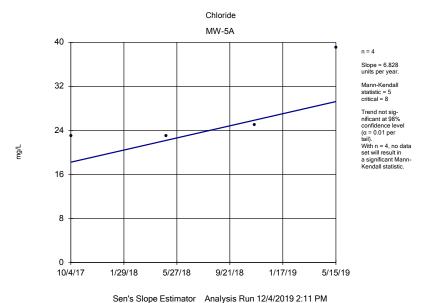

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

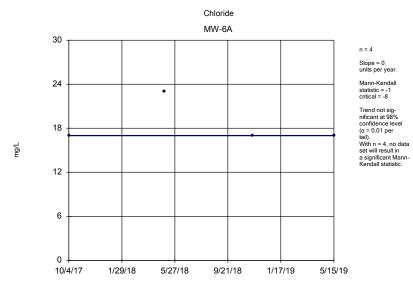

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

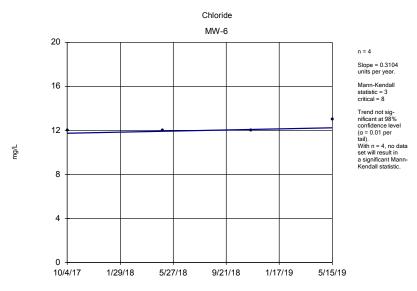
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

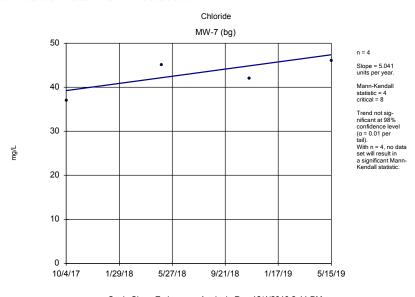

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

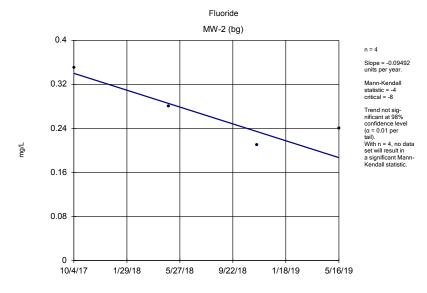

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background


The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

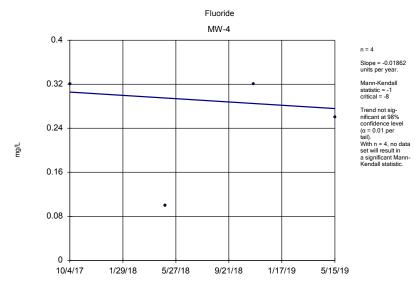

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

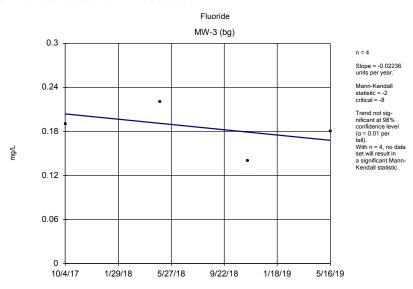

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

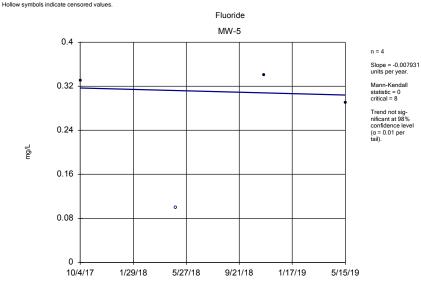
Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM


The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

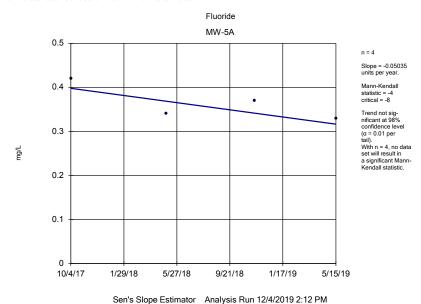
Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM


The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

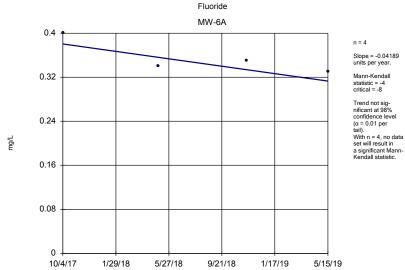
Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG


Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background



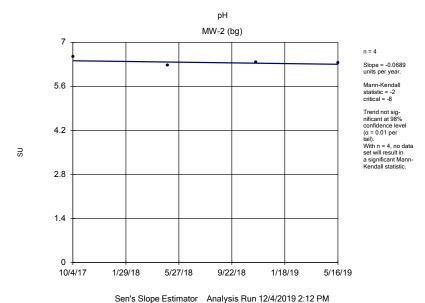
Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

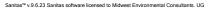
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

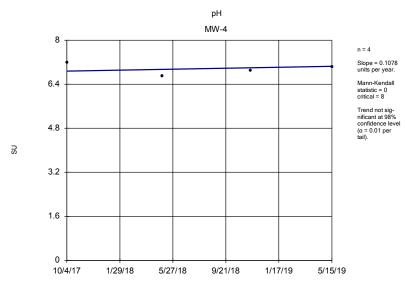

Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

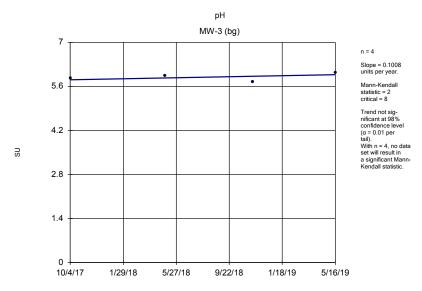

Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

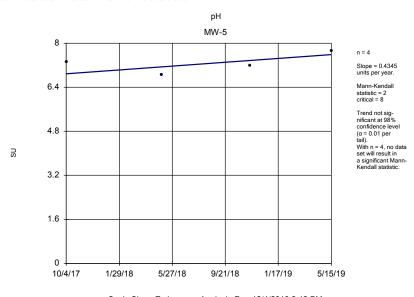
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background



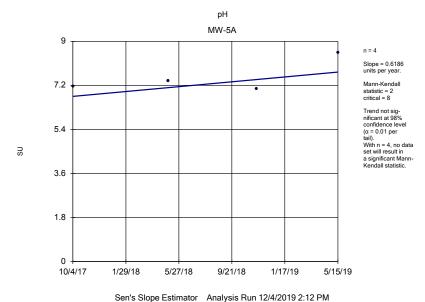

Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

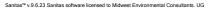

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

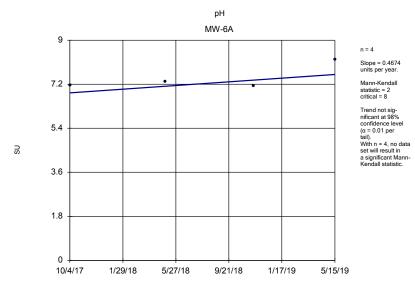

Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

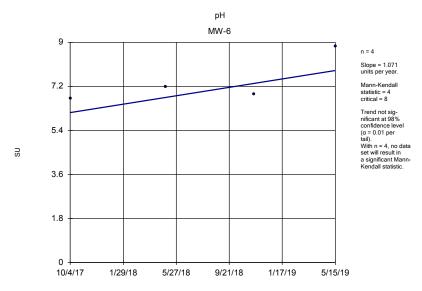

Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

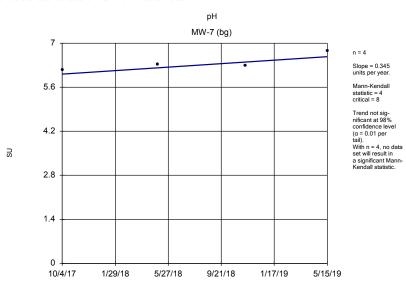
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background



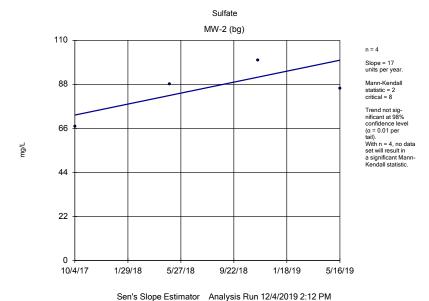

Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

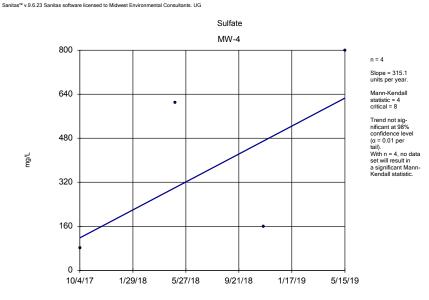

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

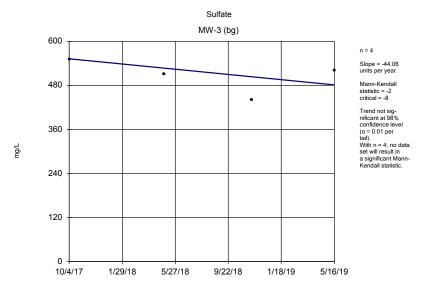
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

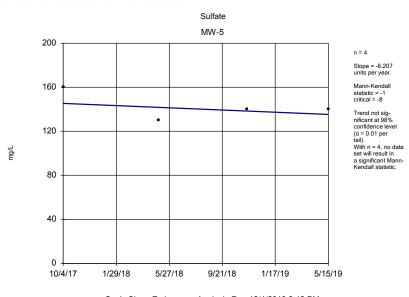

Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

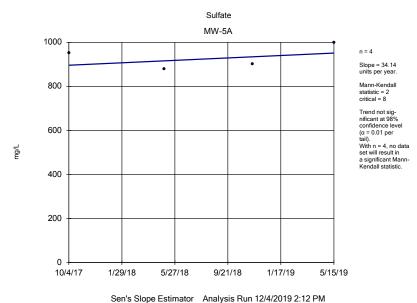

Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

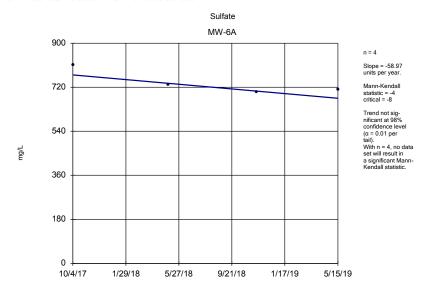

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

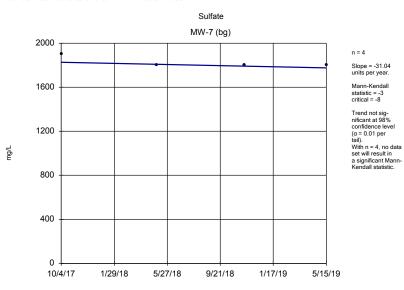

Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

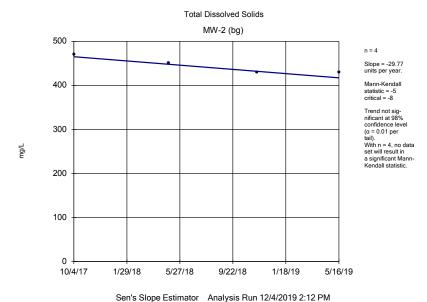

Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

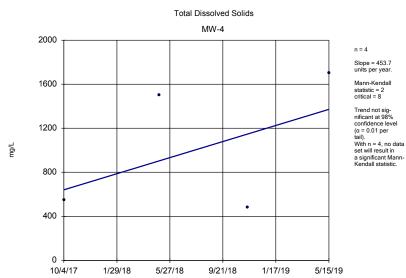
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

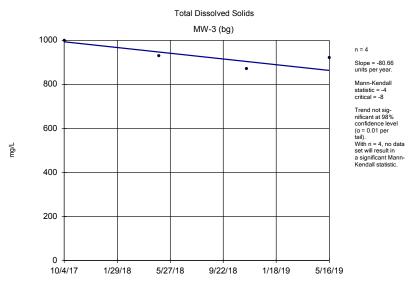

Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

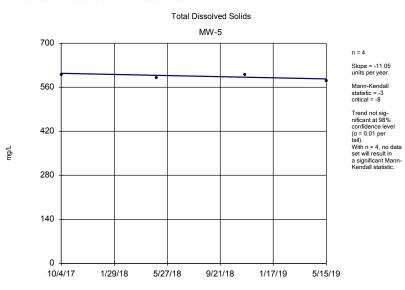


Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

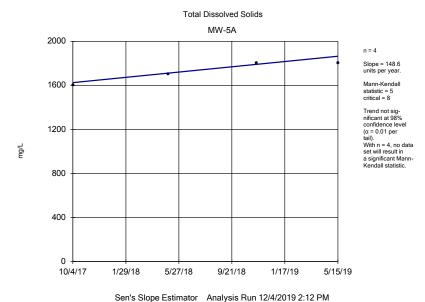
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background



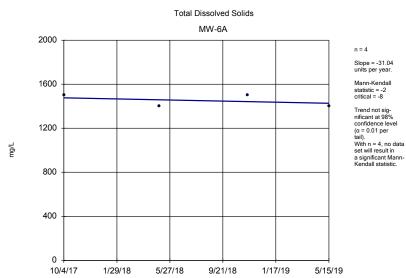
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

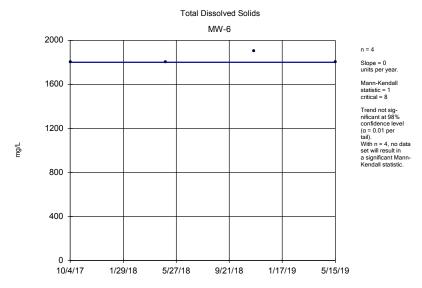

Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

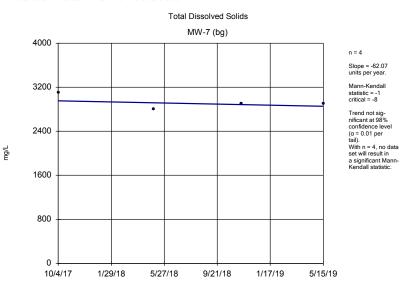


Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background



The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

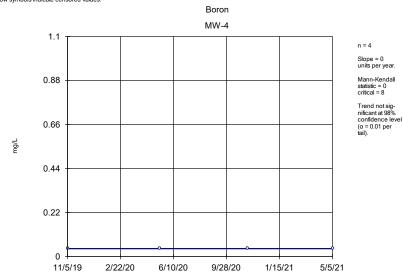
Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

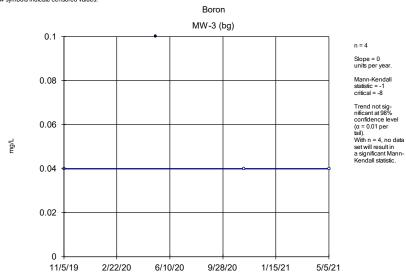
	The Empire District Client: Mic	dwest Environme	ental Consultants	Data: 11-	19 App 3 As	bury pond	s with backg	round Printe	ed 12/4/2019, 2:	13 PM	
Constituent	Well	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Boron (mg/L)	MW-2 (bg)	-0.03847	-4	-8	No	4	0	n/a	n/a	0.02	NP
Boron (mg/L)	MW-3 (bg)	0	-1	-8	No	4	75	n/a	n/a	0.02	NP
Boron (mg/L)	MW-4	0	-1	-8	No	4	75	n/a	n/a	0.02	NP
Boron (mg/L)	MW-5	-0.00	0	8	No	4	0	n/a	n/a	0.02	NP
Boron (mg/L)	MW-5A	0.1202	5	8	No	4	0	n/a	n/a	0.02	NP
Boron (mg/L)	MW-6	-0.01279	-2	-8	No	4	0	n/a	n/a	0.02	NP
Boron (mg/L)	MW-6A	-0.01589	-3	-8	No	4	0	n/a	n/a	0.02	NP
Boron (mg/L)	MW-7 (bg)	-0.03739	-2	-8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-2 (bg)	-4.716	-3	-8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-3 (bg)	1.378	0	8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-4	44.63	2	8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-5	5.214	4	8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-5A	14.15	4	8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-6	3.104	1	8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-6A	-7.588	-4	-8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-7 (bg)	-1.737	0	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-2 (bg)	0	0	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-3 (bg)	3.596	1	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-4	29.71	2	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-5	-0.08649	- -1	-8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-5A	6.828	5	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-6	0.3104	3	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-6A	0	-1	-8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-7 (bg)	5.041	4	8	No	4	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-2 (bg)	-0.09492	-4	-8	No	4	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-3 (bg)	-0.02236	-2	-8	No	4	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-4	-0.01862	<u>-</u> -1	-8	No	4	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-5	-0.00	0	8	No	4	25	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-5A	-0.05035	-4	-8	No	4	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-6	-0.03966	-3	-8	No	4	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-6A	-0.04189	-4	-8	No	4	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-7 (bg)	-0.01557	-2	-8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-2 (bg)	-0.0689	-2	-8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-3 (bg)	0.1008	2	8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-4	0.1078	0	8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-5	0.4345	2	8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-5A	0.6186	2	8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-6	1.071	4	8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-6A	0.4674	2	8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-7 (bg)	0.345	4	8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-2 (bg)	17	2	8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-3 (bg)	-44.06	-2	-8	No	4	0	n/a	n/a	0.02	NP
											NP
Sulfate (mg/L) Sulfate (mg/L)	MW-4 MW-5	315.1 -6.207	4	8 -8	No No	4 4	0 0	n/a	n/a	0.02 0.02	NP NP
			-1 2	-8 8	No No	4	0	n/a	n/a		NP NP
Sulfate (mg/L)	MW-5A	34.14	2		No			n/a	n/a	0.02	
Sulfate (mg/L)	MW-6	-8.649 50.07	-1	-8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-6A	-58.97	-4	-8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-7 (bg)	-31.04	-3	-8	No	4	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-2 (bg)	-29.77	-5	-8	No	4	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-3 (bg)	-80.66	-4	-8	No	4	0	n/a	n/a	0.02	NP


Trend Test

	The Empire District Client: Midwest Environmental Consultants				Data: 11-19 App 3 Asbury ponds with background Printed 12/4/2019, 2:13 PM								
Constituent	Well	Slope	Calc.	<u>Critical</u>	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method		
Total Dissolved Solids (mg/L)	MW-4	453.7	2	8	No	4	0	n/a	n/a	0.02	NP		
Total Dissolved Solids (mg/L)	MW-5	-11.05	-3	-8	No	4	0	n/a	n/a	0.02	NP		
Total Dissolved Solids (mg/L)	MW-5A	148.6	5	8	No	4	0	n/a	n/a	0.02	NP		
Total Dissolved Solids (mg/L)	MW-6	0	1	8	No	4	0	n/a	n/a	0.02	NP		
Total Dissolved Solids (mg/L)	MW-6A	-31.04	-2	-8	No	4	0	n/a	n/a	0.02	NP		
Total Dissolved Solids (mg/L)	MW-7 (bg)	-62.07	-1	-8	No	4	0	n/a	n/a	0.02	NP		

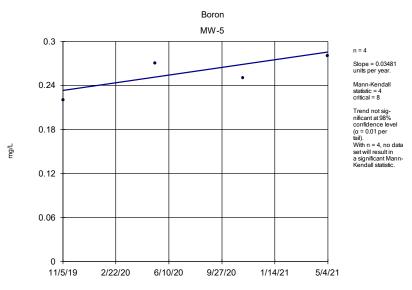
Sen's Slope Estimator Analysis Run 11/18/2021 4:27 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

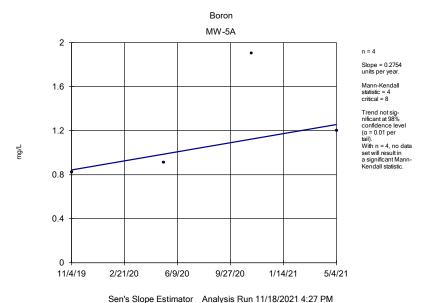

Sanitas™ v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

Sen's Slope Estimator Analysis Run 11/18/2021 4:27 PM

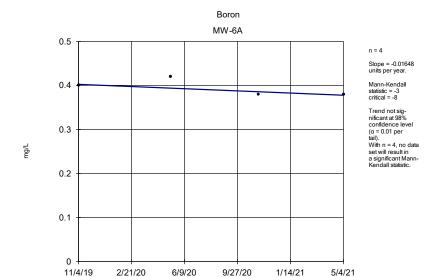
The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background


Sanitas™ v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

Sen's Slope Estimator Analysis Run 11/18/2021 4:27 PM


The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

Sanitas™ v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG

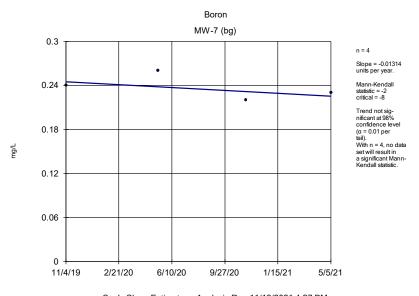


Sen's Slope Estimator Analysis Run 11/18/2021 4:27 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

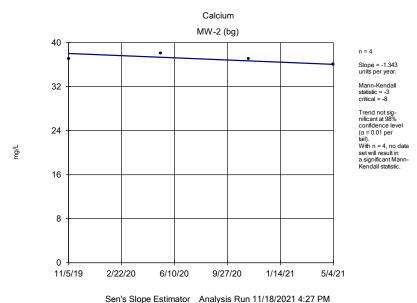
The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

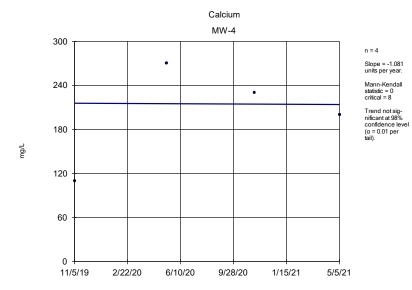
Sen's Slope Estimator Analysis Run 11/18/2021 4:27 PM


The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

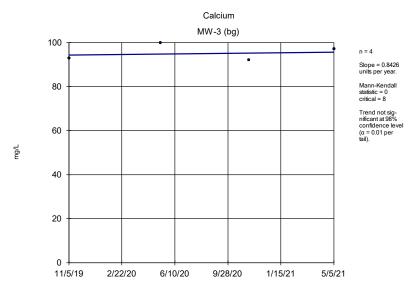
Boron MW-6 0.4 Slope = -0.003336 units per year. Mann-Kendall 0.32 statistic = -1 critical = -8 Trend not sig-nificant at 98% confidence level 0.24 $(\alpha = 0.01 \text{ per})$ With n = 4, no data mg/L set will result in a significant Mann-Kendall statistic. 0.16 0.08 11/4/19 2/21/20 6/9/20 9/27/20 1/14/21 5/4/21

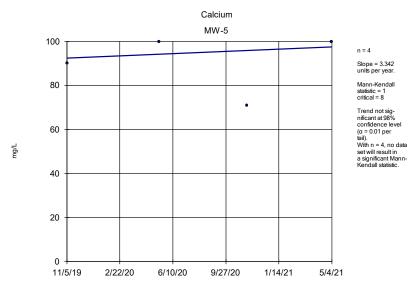
Sen's Slope Estimator Analysis Run 11/18/2021 4:27 PM


The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

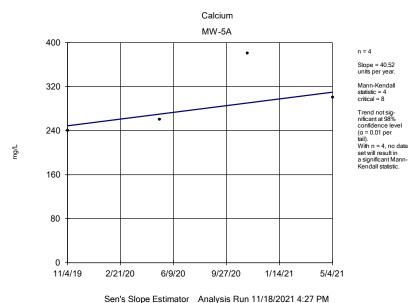

Sen's Slope Estimator Analysis Run 11/18/2021 4:27 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

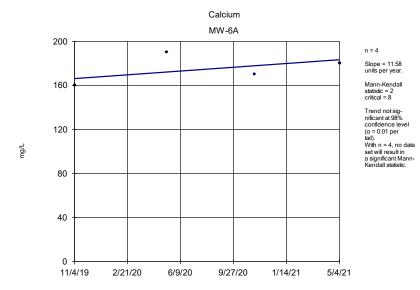

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 11/18/2021 4:27 PM

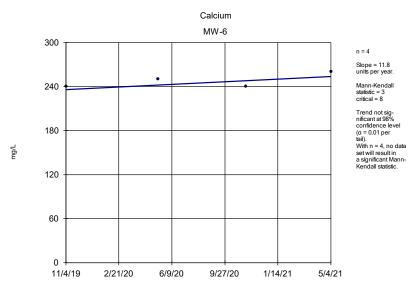
The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

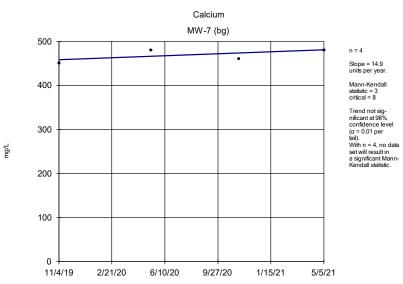

Sen's Slope Estimator Analysis Run 11/18/2021 4:27 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

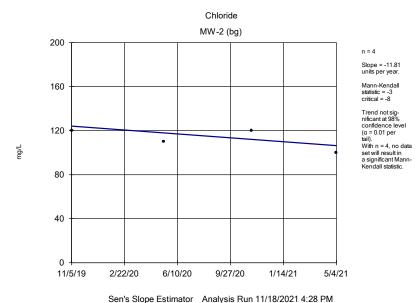

Sen's Slope Estimator Analysis Run 11/18/2021 4:27 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

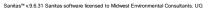

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

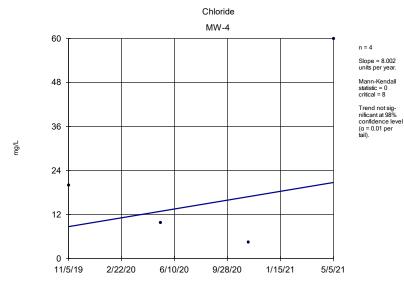

Sen's Slope Estimator Analysis Run 11/18/2021 4:27 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

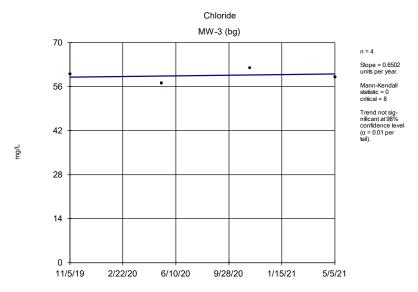

Sen's Slope Estimator Analysis Run 11/18/2021 4:27 PM

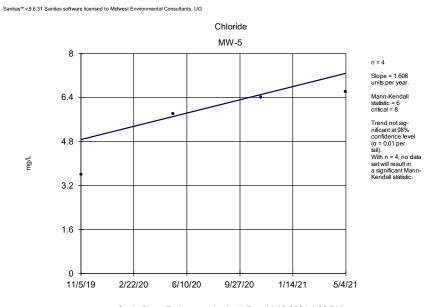
The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background




Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

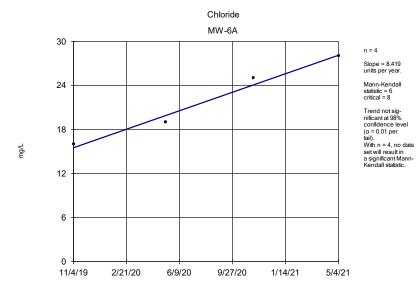

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

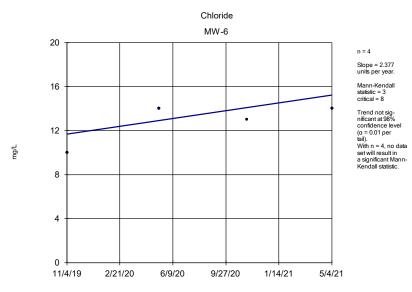

Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

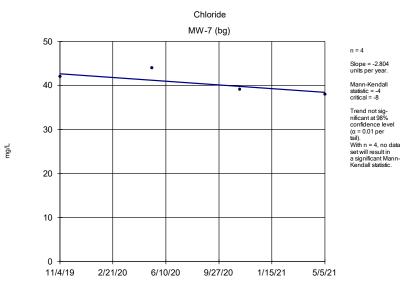


Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

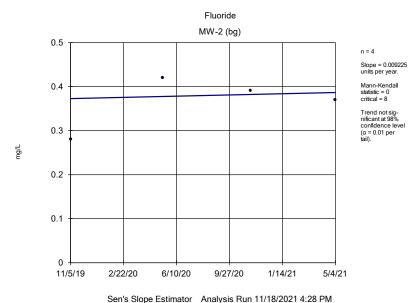
The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background



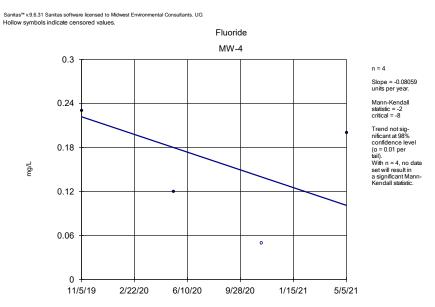
The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

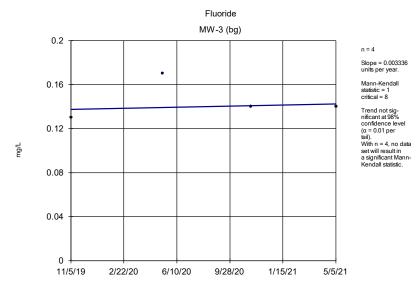

Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background



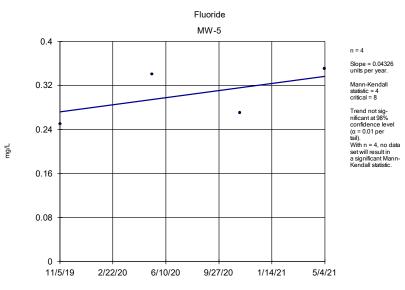
Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background



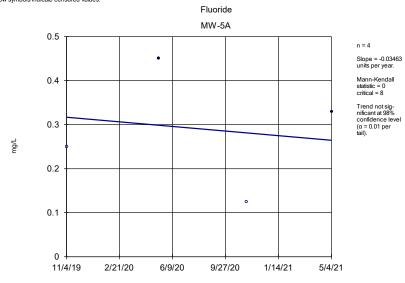
The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM


The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

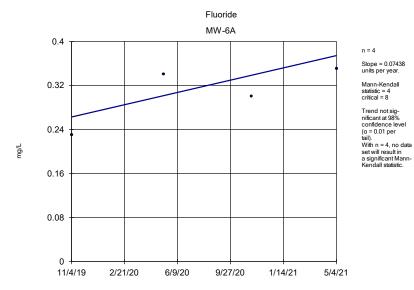
Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background



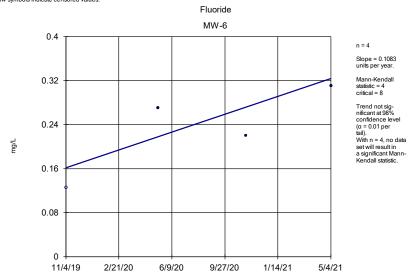
Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background


Sanitas™ v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

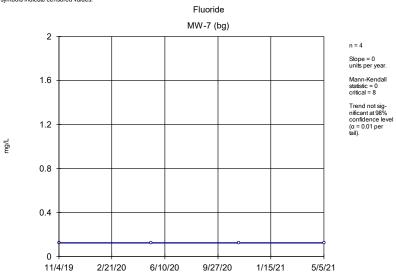
Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background


Sanitas™ v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG

Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

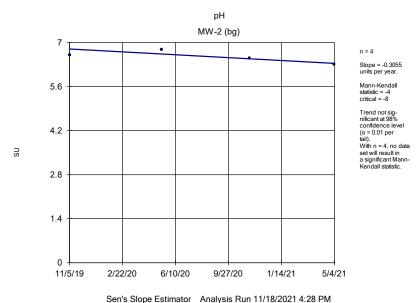
The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background


Sanitas™ v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

Sanitas™ v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.



Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

11/5/19

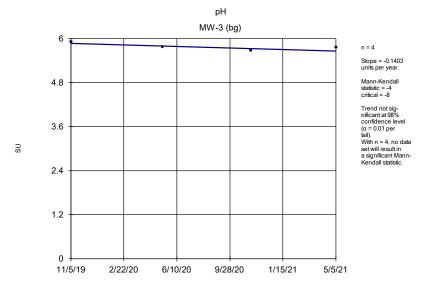
2/22/20

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

рΗ

MW-4 n = 4 Slope = -0.5684 units per year. Mann-Kendall statistic = -2 critical = -8 6.4 Trend not sig-nificant at 98% confidence level 4.8 $(\alpha = 0.01 \text{ per})$ With n = 4, no data SU set will result in a significant Mann-Kendall statistic. 3.2 1.6

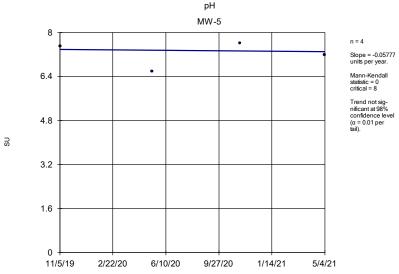
Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM


The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

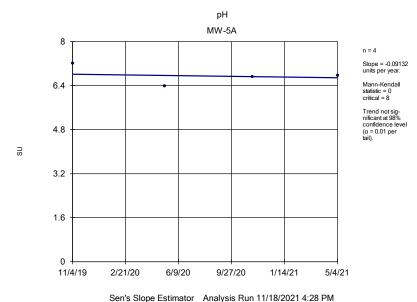
9/28/20

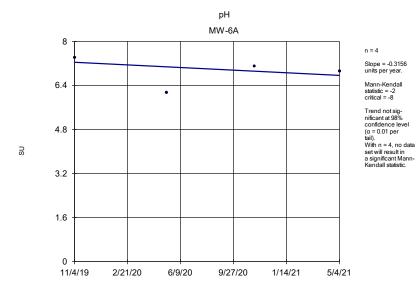
1/15/21

5/5/21

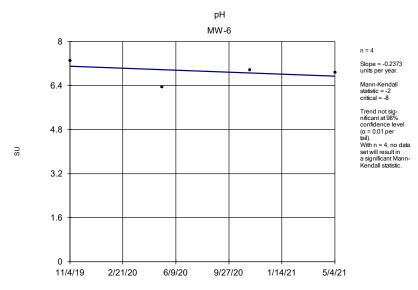

6/10/20

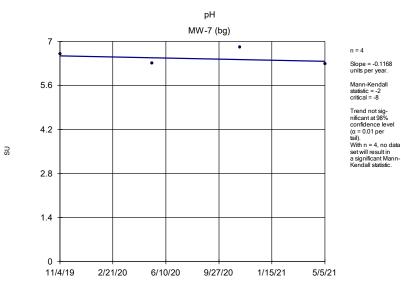
Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM


The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

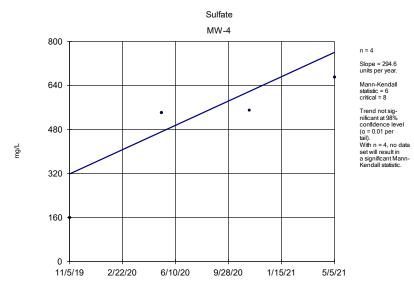

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

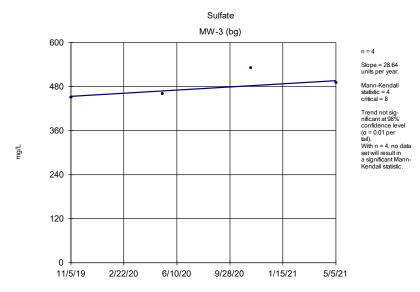
The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

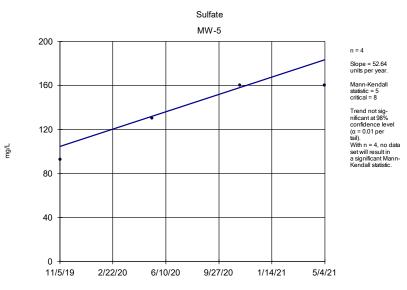
Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

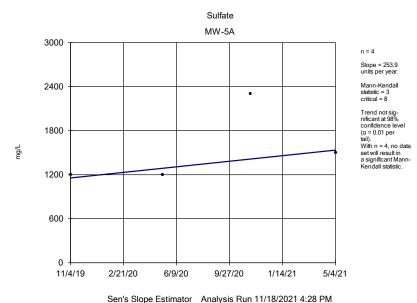

Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

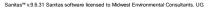

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

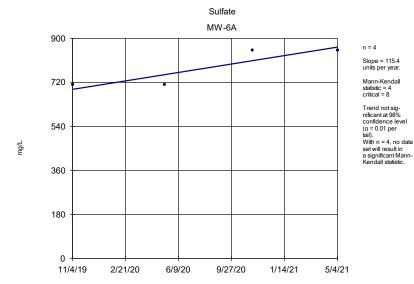

Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

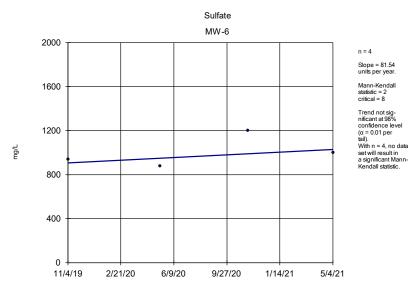

Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background



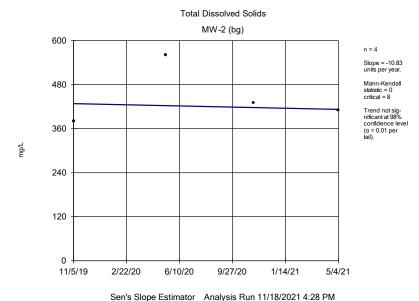

Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

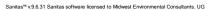

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

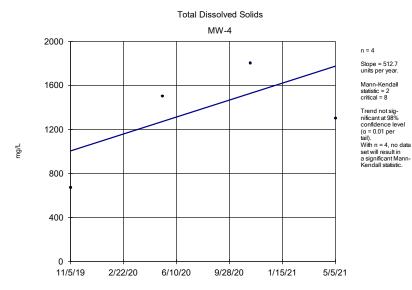
Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

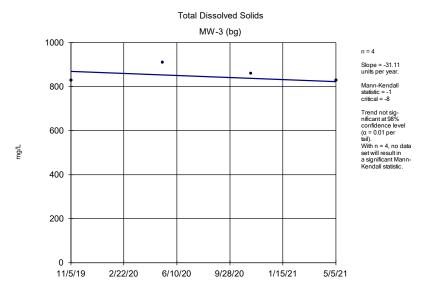

Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

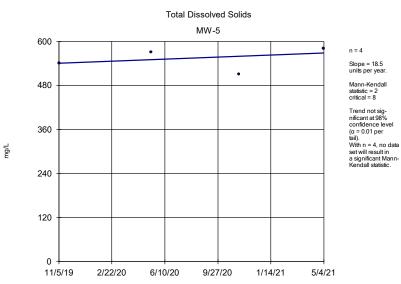
The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background



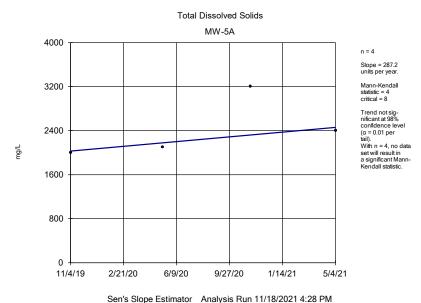

Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

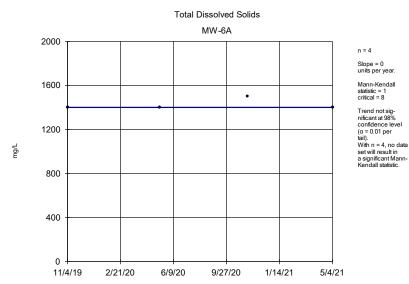

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

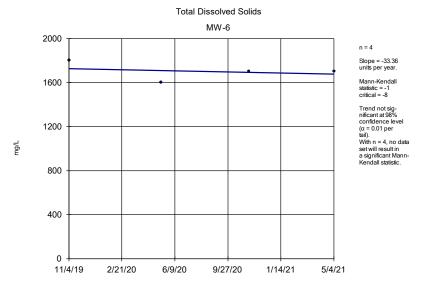

Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

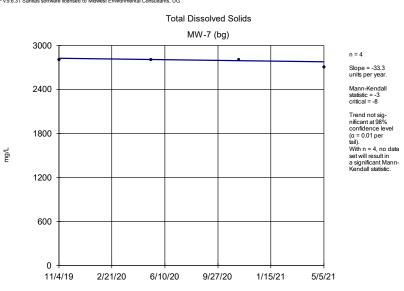


Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background



The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

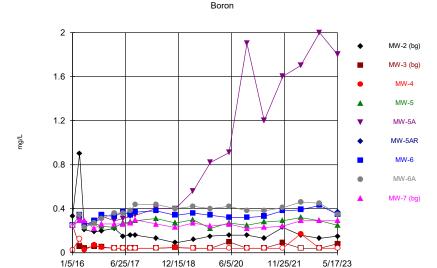
The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

	The Empire District Client: Mid	west Environme	ntal Consultants	Data: 11-2	1 App 3 Asl	bury ponds	s with backg	round Printed	11/18/2021, 4:2	8 PM	
Constituent	<u>Well</u>	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Boron (mg/L)	MW-2 (bg)	-0.00	-1	-8	No	4	0	n/a	n/a	0.02	NP
Boron (mg/L)	MW-3 (bg)	0	-1	-8	No	4	75	n/a	n/a	0.02	NP
Boron (mg/L)	MW-4	0	0	8	No	4	100	n/a	n/a	0.02	NP
Boron (mg/L)	MW-5	0.03481	4	8	No	4	0	n/a	n/a	0.02	NP
Boron (mg/L)	MW-5A	0.2754	4	8	No	4	0	n/a	n/a	0.02	NP
Boron (mg/L)	MW-6	-0.00	-1	-8	No	4	0	n/a	n/a	0.02	NP
Boron (mg/L)	MW-6A	-0.01648	-3	-8	No	4	0	n/a	n/a	0.02	NP
Boron (mg/L)	MW-7 (bg)	-0.01314	-2	-8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-2 (bg)	-1.343	-3	-8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-3 (bg)	0.8426	0	8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-4	-1.081	0	8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-5	3.342	1	8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-5A	40.52	4	8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-6	11.8	3	8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-6A	11.58	2	8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-7 (bg)	14.9	3	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-2 (bg)	-11.81	-3	-8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-3 (bg)	0.6502	0	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-4	8.002	0	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-5	1.608	6	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-5A	31.62	4	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L) Chloride (mg/L)	MW-6	2.377	3	8	No	4	0	n/a	n/a n/a	0.02	NP
						4	0				
Chloride (mg/L)	MW-6A	8.419	6	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-7 (bg)	-2.804	-4	-8	No	4		n/a	n/a	0.02	NP NP
Fluoride (mg/L)	MW-2 (bg)	0.009225	0	8	No		0	n/a	n/a /-	0.02	
Fluoride (mg/L)	MW-3 (bg)	0.003336	1	8	No	4	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-4	-0.08059	-2	-8	No	4	25	n/a	n/a /-	0.02	NP
Fluoride (mg/L)	MW-5	0.04326	4	8	No	4	0	n/a	n/a /-	0.02	NP
Fluoride (mg/L)	MW-5A	-0.03463	0	8	No	4	50	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-6	0.1083	4	8	No	4	25	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-6A	0.07438	4	8	No	4	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-7 (bg)	0	0	8	No	4	100	n/a	n/a	0.02	NP
pH (SU)	MW-2 (bg)	-0.3055	-4	-8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-3 (bg)	-0.1403	-4	-8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-4	-0.5684	-2	-8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-5	-0.05777	0	8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-5A	-0.09132	0	8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-6	-0.2373	-2	-8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-6A	-0.3156	-2	-8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-7 (bg)	-0.1168	-2	-8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-2 (bg)	-6.294	-2	-8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-3 (bg)	28.64	4	8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-4	294.6	6	8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-5	52.64	5	8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-5A	253.9	3	8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-6	81.54	2	8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-6A	115.4	4	8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-7 (bg)	102.2	1	8	No	4	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-2 (bg)	-10.83	0	8	No	4	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-3 (bg)	-31.11	-1	-8	No	4	0	n/a	n/a	0.02	NP

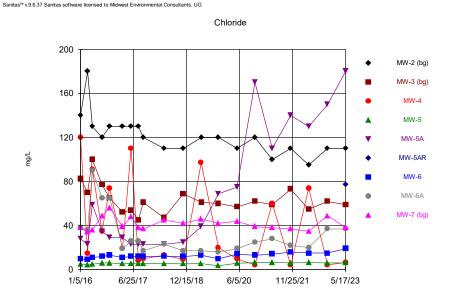
Trend Test


The Empire District Client: Mic	west Environme	ental Consultants	Data: 11-2	1 App 3 Asl	bury ponds	with backgi	ound Printed	11/18/2021, 4	:28 PM	
<u>Well</u>	Slope	<u>Calc.</u>	<u>Critical</u>	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
MW-4	512.7	2	8	No	4	0	n/a	n/a	0.02	NP
MW-5	18.5	2	8	No	4	0	n/a	n/a	0.02	NP
MW-5A	287.2	4	8	No	4	0	n/a	n/a	0.02	NP
MW-6	-33.36	-1	-8	No	4	0	n/a	n/a	0.02	NP
MW-6A	0	1	8	No	4	0	n/a	n/a	0.02	NP
MW-7 (bg)	-33.3	-3	-8	No	4	0	n/a	n/a	0.02	NP
	Well MW-4 MW-5 MW-5A MW-6 MW-6A	Well Slope MW-4 512.7 MW-5 18.5 MW-5A 287.2 MW-6 -33.36 MW-6A 0	Well Slope Calc. MW-4 512.7 2 MW-5 18.5 2 MW-5A 287.2 4 MW-6 -33.36 -1 MW-6A 0 1	Well Slope Calc. Critical MW-4 512.7 2 8 MW-5 18.5 2 8 MW-5A 287.2 4 8 MW-6 -33.36 -1 -8 MW-6A 0 1 8	Well Slope Calc. Critical Sig. MW-4 512.7 2 8 No MW-5 18.5 2 8 No MW-5A 287.2 4 8 No MW-6 -33.36 -1 -8 No MW-6A 0 1 8 No	Well Slope Calc. Critical Sig. N MW-4 512.7 2 8 No 4 MW-5 18.5 2 8 No 4 MW-5A 287.2 4 8 No 4 MW-6 -33.36 -1 -8 No 4 MW-6A 0 1 8 No 4	Well Slope Calc. Critical Sig. N %NDs MW-4 512.7 2 8 No 4 0 MW-5 18.5 2 8 No 4 0 MW-5A 287.2 4 8 No 4 0 MW-6 -33.36 -1 -8 No 4 0 MW-6A 0 1 8 No 4 0	Well Slope Calc. Critical Sig. N %NDs Normality MW-4 512.7 2 8 No 4 0 n/a MW-5 18.5 2 8 No 4 0 n/a MW-5A 287.2 4 8 No 4 0 n/a MW-6 -33.36 -1 -8 No 4 0 n/a MW-6A 0 1 8 No 4 0 n/a	Well Slope Calc. Critical Sig. N %NDs Normality Xform MW-4 512.7 2 8 No 4 0 n/a n/a MW-5 18.5 2 8 No 4 0 n/a n/a MW-5A 287.2 4 8 No 4 0 n/a n/a MW-6 -33.36 -1 -8 No 4 0 n/a n/a MW-6A 0 1 8 No 4 0 n/a n/a	Well Slope Calc. Critical Sig. N %NDs Normality Xform Alpha MW-4 512.7 2 8 No 4 0 n/a n/a 0.02 MW-5 18.5 2 8 No 4 0 n/a n/a 0.02 MW-5A 287.2 4 8 No 4 0 n/a n/a 0.02 MW-6 -33.36 -1 -8 No 4 0 n/a n/a 0.02 MW-6A 0 1 8 No 4 0 n/a n/a 0.02

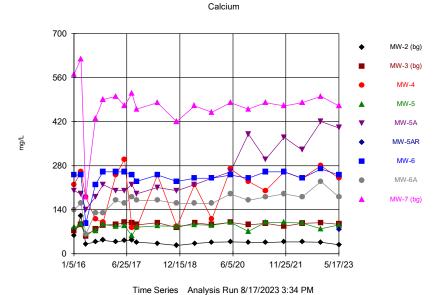
Sanitas[™] Output – Sampling Event

Time Series Analysis

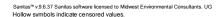
6/25/17

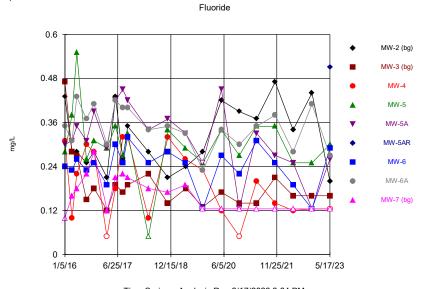

Time Series Analysis Run 8/17/2023 3:34 PM The Empire District Client: Midwest Environmental Consultants Data: 5-23 App 3 Asbury ponds with background

6/5/20

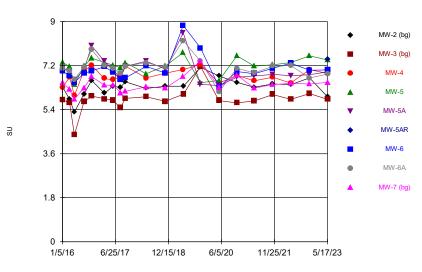

11/25/21

5/17/23

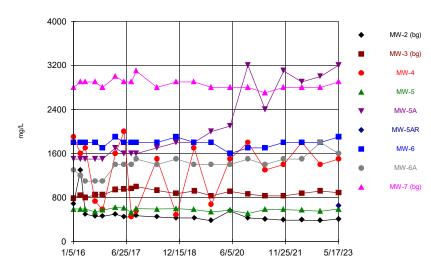

12/15/18



Time Series Analysis Run 8/17/2023 3:34 PM The Empire District Client: Midwest Environmental Consultants Data: 5-23 App 3 Asbury ponds with background


The Empire District Client: Midwest Environmental Consultants Data: 5-23 App 3 Asbury ponds with background

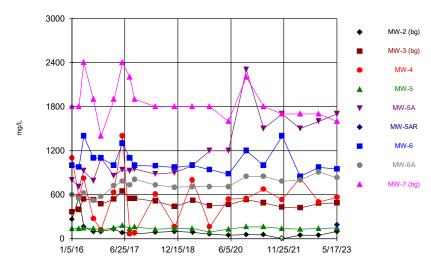
Time Series Analysis Run 8/17/2023 3:34 PM The Empire District Client: Midwest Environmental Consultants Data: 5-23 App 3 Asbury ponds with background



Time Series Analysis Run 8/17/2023 3:34 PM

The Empire District Client: Midwest Environmental Consultants Data: 5-23 App 3 Asbury ponds with background

Sanitas™ v.9.6.37 Sanitas software licensed to Midwest Environmental Consultants. UG


Total Dissolved Solids

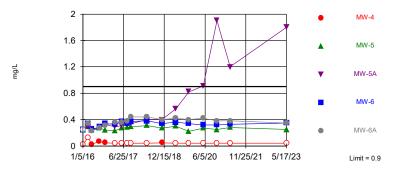
Time Series Analysis Run 8/17/2023 3:34 PM

Sanitas™ v.9.6.37 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

Sulfate

Time Series Analysis Run 8/17/2023 3:34 PM

The Empire District Client: Midwest Environmental Consultants Data: 5-23 App 3 Asbury ponds with background

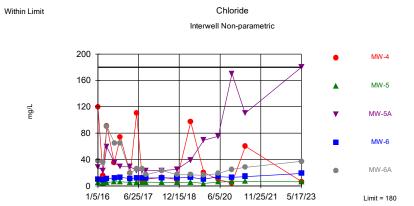


Sanitas[™] Output – Sampling Event Prediction Limits

Hollow symbols indicate censored values.

Exceeds Limit: MW-5A Boron

Interwell Non-parametric

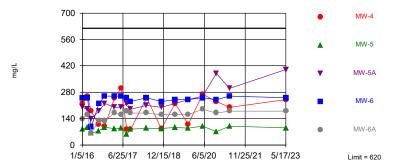


Non-parametric test used in lieu of parametric prediction limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 51 background values. 21.57% NDs. Annual perconstituent alpha = 0.004342. Individual comparison alpha = 0.000725 (1 of 2). Comparing 5 points to limit. Seasonality was not detected with 95% confidence.

Prediction Limit Analysis Run 8/17/2023 3:51 PM

The Empire District Client: Midwest Environmental Consultants Data: 5-23 App 3 Asbury ponds with background

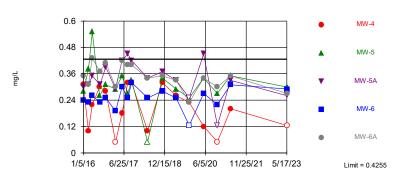
Sanitas™ v.9.6.37 Sanitas software licensed to Midwest Environmental Consultants. UG



Non-parametric test used in lieu of parametric prediction limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 51 background values. Annual per-constituent alpha = 0.004342. Individual comparison alpha = 0.000725 (1 of 2). Comparing 5 points to limit. Seasonality was not detected with 95% confidence.

Sanitas™ v.9.6.37 Sanitas software licensed to Midwest Environmental Consultants. UG

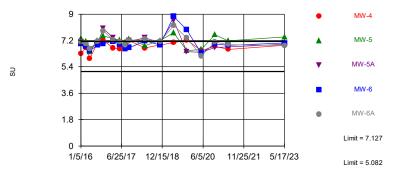
Within Limit Calcium


Non-parametric test used in lieu of parametric prediction limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 51 background values. Annual per-constituent alpha = 0.004342. Individual comparison alpha = 0.000725 (1 of 2). Comparing 5 points to limit. Seasonality was not detected with 95% confidence.

Prediction Limit Analysis Run 8/17/2023 3:51 PM

The Empire District Client: Midwest Environmental Consultants Data: 5-23 App 3 Asbury ponds with background

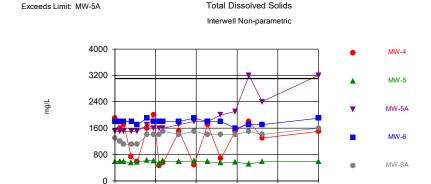
Sanitas™ v.9.6.37 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.


Within Limit Fluoride
Interwell Parametric

Background Data Summary (based on square root transformation): Mean=0.4621, Std. Dev.=0.09303, n=51, 11.76% NDs. Seasonality was not detected with 95% confidence. Normality test Shapiro Francia @alpha = 0.01, calculated = 0.9449, critical = 0.935. Kappa = 2.044 (c=23, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002288. Individual comparison alpha = 0.0007632. Comparing 5 points to limit.

Exceeds Limits: MW-5 pH

Interwell Parametric



Background Data Summary (based on square transformation): Mean=38.31, Std. Dev.=6.108, n=51. Seasonality was not detected with 95% confidence. Normality test: Shapiro Francia @alpha = 0.01, calculated = 0.9427, critical = 0.935. Kappa = 2.044 (c=23, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.00288. Individual comparison alpha = 0.0003816. Comparing 5 points to limit.

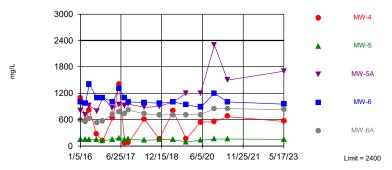
Prediction Limit Analysis Run 8/17/2023 3:51 PM

The Empire District Client: Midwest Environmental Consultants Data: 5-23 App 3 Asbury ponds with background

Sanitas™ v.9.6.37 Sanitas software licensed to Midwest Environmental Consultants. UG

1/5/16 6/25/17 12/15/18 6/5/20 11/25/21 5/17/23


Non-parametric test used in lieu of parametric prediction limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 51 background values. Annual per-constituent alpha = 0.004342. Individual comparison alpha = 0.000725 (1 of 2). Comparing 5 points to limit. Seasonality was not detected with 95% confidence.


Limit = 3100

Prediction Limit Analysis Run 8/17/2023 3:51 PM

The Empire District Client: Midwest Environmental Consultants Data: 5-23 App 3 Asbury ponds with background

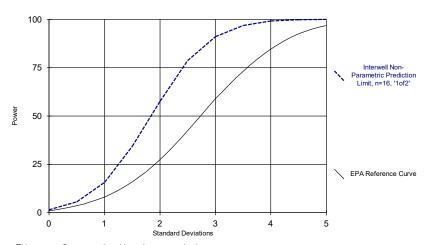
Sanitas™ v.9.6.37 Sanitas software licensed to Midwest Environmental Consultants. UG

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 51 background values. Annual per-constituent alpha = 0.004342. Individual comparison alpha = 0.000725 (1 of 2). Comparing 5 points to limit. Seasonality was not detected with 95% confidence.

Prediction Limit Analysis Run 8/17/2023 3:51 PM

The Empire District Client: Midwest Environmental Consultants Data: 5-23 App 3 Asbury ponds with background

Prediction Limit


	The Empire Distri	ct Client: Midwe	est Environmental	Consultants	Data: 5-23 App	3 Asbu	ıry pond	s with back	ground Printed 8/1	7/2023, 3:59	PM
Constituent	Well	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig.	Bg N	%NDs	Transform	<u>Alpha</u>	Method
Boron (mg/L)	MW-4	0.9	n/a	5/17/2023	0.04ND	No	51	21.57	n/a	0.000725	NP Inter (normality)
Boron (mg/L)	MW-5	0.9	n/a	5/17/2023	0.25	No	51	21.57	n/a	0.000725	NP Inter (normality)
Boron (mg/L)	MW-5A	0.9	n/a	5/17/2023	1.8	Yes	51	21.57	n/a	0.000725	NP Inter (normality)
Boron (mg/L)	MW-6	0.9	n/a	5/17/2023	0.35	No	51	21.57	n/a	0.000725	NP Inter (normality)
Boron (mg/L)	MW-6A	0.9	n/a	5/17/2023	0.35	No	51	21.57	n/a	0.000725	NP Inter (normality)
Calcium (mg/L)	MW-4	620	n/a	5/17/2023	240	No	51	0	n/a	0.000725	NP Inter (normality)
Calcium (mg/L)	MW-5	620	n/a	5/17/2023	91	No	51	0	n/a	0.000725	NP Inter (normality)
Calcium (mg/L)	MW-5A	620	n/a	5/17/2023	400	No	51	0	n/a	0.000725	NP Inter (normality)
Calcium (mg/L)	MW-6	620	n/a	5/17/2023	250	No	51	0	n/a	0.000725	NP Inter (normality)
Calcium (mg/L)	MW-6A	620	n/a	5/17/2023	180	No	51	0	n/a	0.000725	NP Inter (normality)
Chloride (mg/L)	MW-4	180	n/a	5/17/2023	6.5	No	51	0	n/a	0.000725	NP Inter (normality)
Chloride (mg/L)	MW-5	180	n/a	5/17/2023	6.2	No	51	0	n/a	0.000725	NP Inter (normality)
Chloride (mg/L)	MW-5A	180	n/a	5/17/2023	180	No	51	0	n/a	0.000725	NP Inter (normality)
Chloride (mg/L)	MW-6	180	n/a	5/17/2023	19	No	51	0	n/a	0.000725	NP Inter (normality)
Chloride (mg/L)	MW-6A	180	n/a	5/17/2023	37	No	51	0	n/a	0.000725	NP Inter (normality)
Fluoride (mg/L)	MW-4	0.4255	n/a	5/17/2023	0.125ND	No	51	11.76	sqrt(x)	0.000	Param Inter 1 of 2
Fluoride (mg/L)	MW-5	0.4255	n/a	5/17/2023	0.3	No	51	11.76	sqrt(x)	0.000	Param Inter 1 of 2
Fluoride (mg/L)	MW-5A	0.4255	n/a	5/17/2023	0.26	No	51	11.76	sqrt(x)	0.000	Param Inter 1 of 2
Fluoride (mg/L)	MW-6	0.4255	n/a	5/17/2023	0.29	No	51	11.76	sqrt(x)	0.000	Param Inter 1 of 2
Fluoride (mg/L)	MW-6A	0.4255	n/a	5/17/2023	0.27	No	51	11.76	sqrt(x)	0.000	Param Inter 1 of 2
pH (SU)	MW-4	7.127	5.082	5/17/2023	6.88	No	51	0	x^2	0.000	Param Inter 1 of 2
pH (SU)	MW-5	7.127	5.082	5/17/2023	7.43	Yes	51	0	x^2	0.000	Param Inter 1 of 2
pH (SU)	MW-5A	7.127	5.082	5/17/2023	6.94	No	51	0	x^2	0.000	Param Inter 1 of 2
pH (SU)	MW-6	7.127	5.082	5/17/2023	7.02	No	51	0	x^2	0.000	Param Inter 1 of 2
pH (SU)	MW-6A	7.127	5.082	5/17/2023	6.85	No	51	0	x^2	0.000	Param Inter 1 of 2
Sulfate (mg/L)	MW-4	2400	n/a	5/17/2023	560	No	51	0	n/a	0.000725	NP Inter (normality)
Sulfate (mg/L)	MW-5	2400	n/a	5/17/2023	150	No	51	0	n/a	0.000725	NP Inter (normality)
Sulfate (mg/L)	MW-5A	2400	n/a	5/17/2023	1700	No	51	0	n/a	0.000725	NP Inter (normality)
Sulfate (mg/L)	MW-6	2400	n/a	5/17/2023	950	No	51	0	n/a	0.000725	NP Inter (normality)
Sulfate (mg/L)	MW-6A	2400	n/a	5/17/2023	830	No	51	0	n/a	0.000725	NP Inter (normality)
Total Dissolved Solids (mg/L)	MW-4	3100	n/a	5/17/2023	1500	No	51	0	n/a	0.000725	NP Inter (normality)
Total Dissolved Solids (mg/L)	MW-5	3100	n/a	5/17/2023	590	No	51	0	n/a	0.000725	NP Inter (normality)
Total Dissolved Solids (mg/L)	MW-5A	3100	n/a	5/17/2023	3200	Yes	51	0	n/a	0.000725	NP Inter (normality)
Total Dissolved Solids (mg/L)	MW-6	3100	n/a	5/17/2023	1900	No	51	0	n/a	0.000725	NP Inter (normality)
Total Dissolved Solids (mg/L)	MW-6A	3100	n/a	5/17/2023	1600	No	51	0	n/a	0.000725	NP Inter (normality)

Sanitas[™] Output – Sampling Event

Power Curve

This report reflects annual total based on two evaluations per year.

Analysis Run 8/17/2023 4:01 PM

The Empire District Client: Midwest Environmental Consultants Data: 5-23 App 3 Asbury ponds with background

APPENDIX B

November 2023 Sampling Event

Groundwater Monitoring, Sampling & Statistics Per EPA CCR Rule (CFR § 257.90-.98)

November 2023 Sampling Event

Asbury Power Plant CCR Impoundment Jasper County, MO

January 2024

Prepared For:

The Empire District Electric Company 602 S. Joplin Avenue Joplin, Missouri 64801

TABLE OF CONTENTS

1.0 INTRODUCTION	1
2.0 SITE LOCATION	3
2.1 History	3
2.2 Site Geology	3
2.3 Groundwater Monitoring Network Design	4
2.4 Groundwater Monitoring Network	5
2.5 Seasonal Variation	5
2.6 Groundwater Flow Direction	5
3.0 BASELINE GROUNDWATER DATA	6
3.1 Baseline Data Collection	6
3.2 Background Data Analysis	6
4.0 GROUNDWATER SAMPLING EVENT	8
5.0 DATA VALIDATION PROCEDURES FOR GROUNDWATER MONITORING DATA	9
5.1 Precision	9
5.2 Accuracy	9
5.3 Representativeness	9
5.4 Comparability	9
5.5 Completeness	10
6.0 STATISTICAL ANALYSIS	11
6.1 Sampling Results	11
6.2 Statistical Analysis	11
6.3 Results Interpretation	13
6.4 Proposed Actions	20

LIST OF FIGURES

Figure 1 – Site Location

Figure 2 - Monitoring Well Location

Figure 3 – Potentiometric Map

LIST OF APPENDICES

Appendix 1 – EPA/MDNR Correspondence

Appendix 2 – Baseline Sampling Information

Appendix 3 – Monitoring Well Field Inspection Sheets and Field Notes

Appendix 4 – Analytical Results from Lab

Appendix 5 – Statistical Analysis

1.0 INTRODUCTION

The EPA Coal Combustion Residual Regulations (40 CFR Part 257) (CCR Rule) require groundwater monitoring of CCR impoundments. This Asbury Power Plant CCR impoundment groundwater monitoring sampling report is in accordance with the EPA CCR Rule. In accordance with the EPA CCR Rule (§ 257.90-.98) the status of the Groundwater Monitoring was placed on-line October 17, 2017, as required by the EPA CCR rule. Empire notified the Missouri Department of Natural Resources (MDNR) "State Director" via e-mail when this document was posted on-line, as required in the CCR rule.

The EPA CCR Rule requires the annual groundwater report to be prepared by January 31st of the following year. The first report was due January 31, 2018. This report was prepared in general accordance with the EPA CCR Rule for groundwater requirements. These regulations outline groundwater monitoring requirements and data evaluation methods. The annual groundwater report for the 2023 sampling events will be posted on-line within 30 days of placement in the operating record and the State Director will be notified.

A Site Characterization Workplan was submitted to the MDNR. On November 2, 2017, the facility received approval from MDNR that the site had been properly characterized and the facility could begin groundwater monitoring (included in **Appendix 1**).

The purpose of the groundwater monitoring system is to monitor the ground water quality surrounding the facility and to evaluate potential impacts and/or releases from facility operations. Eight rounds of background groundwater data were collected from January 2016 to August 2017. After the background data is obtained and after the first semi-annual sampling event, a reduced sampling frequency replaced the quarterly events to semi-annual events. This reduced sampling frequency will generally be completed during the months of May and November. Statistical analysis for EPA Appendix III results began after the first semi-annual sampling event which was collected on October 4, 2017. This analysis was to determine if a statistically significant increase (SSI) has occurred. If an SSI is verified, additional evaluation is required to determine if the SSI was caused by the CCR impoundment.

The Asbury Power Plant was retired on March 1, 2020. Residual fly ash, bottom ash, and other related wastes were placed in the impoundment area until April 1, 2021, as part of the decommissioning activities. On April 1, 2021, a Notification of Intent to Close CCR Surface Impoundment was posted to the facility's website and the State Director (MDNR) was notified. Dewatering of the impoundment was occurring during the first part of 2022. CCR grading, excavation and relocation activities began in June of 2022. Closure of the CCR impoundment was completed on January 23, 2023.

On November 28 and 29, 2023, a semi-annual sampling event was conducted per the EPA CCR Rule (§ 257.90-.98). The original nine (9) groundwater-monitoring wells were sampled and analyzed for the EPA Appendix III. In addition, MW-5AR sampling began in May 2023. MW-5AR was installed in April 2023 in response to the Alternative Source Demonstration (ASD) which was completed in April 2021. The ASD was placed in the operating record. After review of the first semi-annual groundwater sampling event analytical results completed in October 2017, the constituents listed in Appendix IV were eliminated from the overall semi-annual detection monitoring plan in accordance with the EPA CCR Rule. For quality assurance and quality control

measures, a duplicate sample at MW-5 was taken. These samples were preserved and submitted directly to the laboratory.

This report is a summary of the November 2023 sampling event and the findings of the statistical analysis of the results of the groundwater monitoring program at the Asbury Power Plant CCR Impoundment. Specific information about each sampling event can be obtained from the individual report which is part of the Asbury Operating Record.

2.0 SITE LOCATION

The site occupies the north half of Section 17, Township 30 North, and Range 33 West on the Asbury 7.5-Minute Quadrangle Map as seen in **Figure 1**. The site is located approximately 5.5 miles north-northeast of Asbury, Missouri, about 14 miles north-northwest of Joplin, Missouri. A map showing the locations of the monitoring wells is in **Figure 2**.

2.1 History

In March 1996, five (5) groundwater monitoring wells, MW-1 through MW-5, were installed around the perimeter of the Asbury Power Plant CCR impoundment. Monitoring wells MW-1, MW-2 and MW-3 were installed to a total depth of between 27.0 to 28.5 feet below ground surface (bgs). Monitoring wells MW-4 and MW-5 were installed to a total depth of 48 feet bgs. Each of the five monitoring wells was equipped with 10.0-foot well screens. The five wells were then developed, purged, and sampled in 1996.

In 2003, two (2) additional groundwater monitoring wells were installed and identified as MW-6 and MW-7. Both wells had 2-inch diameter PVC well casings installed to an approximate total depth of 44 feet below ground surface. Both wells were installed with an above ground steel protective cover. No other construction details such as well screen lengths were available for these two (2) wells. In December 2015, two (2) additional groundwater monitoring wells were installed and identified as MW-5A and MW-6A.

In April 2023, monitoring well MW-5AR was installed as proposed in the Alternative Source Demonstration completed April 2021. As part of this well installation maintenance of the entire groundwater monitoring well system was also completed. This included the installation of new concrete well pads, protective covers, and protective bollards. The well riser pipe was also modified for well cap installation. New as-built survey data was obtained and will be utilized in this and future reports. MW-5A will not be removed until after the eight (8) background samples have been collected for MW-5AR.

All wells are registered with MDNR – Missouri Geological Survey Program.

The Asbury Power Plant was retired on March 1, 2020, but residual fly ash, bottom ash, and other related wastes were placed in the impoundment area as part of the decommissioning activities. The facility is now known as the Asbury Renewable Operations Center. On April 1, 2021, a Notification of Intent to Close CCR Surface Impoundment was posted to the facility's website and the State Director (MDNR) was notified. Dewatering of the impoundment was occurring during the first part of 2022. CCR grading, excavation and relocation activities began in June of 2022. Closure of the CCR impoundment was completed on January 23, 2023.

2.2 Site Geology

Drilling and subsurface investigation activities at the Site and as part of the MDNR approved CCR landfill Detailed Site Investigation (DSI) for the adjacent landfill area identified three (3) primary geologic units at the Site. These geologic units include the surficial soil layer, Warner Sandstone (uppermost aquifer), and Riverton Shale (confining unit). The information presented herein includes the primary elements of a site characterization work plan consistent with the MDNR guidance.

<u>Surficial Soil</u>. Soils at the site consist of a surficial unit of cohesive soils (e.g., CL, SC, ML, and CH) underlain by Pennsylvanian-age bedrock. Soil thickness at the Site ranges from approximately 15-25 feet.

Warner Sandstone. The Warner Sandstone (Sandstone) is the uppermost bedrock unit in the south portion of the Site. In the north area of the Site, the Sandstone is overlain by the Riverton Shale (Shale). Based on the DSI information, the Sandstone and Shale can occur as alternating layers. The Sandstone and Shale are gradational in places and transition from shaley sandstone to sandy shale. According to the MDNR publication on the Pennsylvanian Subsystem in Missouri, the Warner Sandstone formation is described as follows: "Generally, the lower part is interbedded, very fine-grained sandstone and claystone. The upper part is largely medium bedded to massive channel fill sandstone. In places, the Warner consists primarily of shale and claystone, with only minor amounts of sandstone" and "ranges in thickness from 0 to 15m (49.2 ft.)."

The Sandstone is more than 25-30 feet thick in places and is generally medium hard and thin to medium bedded with occasional shale partings. The degree of induration of the Sandstone varies and generally increases with depth. Slug tests performed at selected DSI piezometers screened in the Sandstone exhibited hydraulic conductivities ranging from approximately 1.3x10-4 cm/sec to 5.9x10-6 cm/sec. The slug test results are consistent with values for sandstone and shaley sandstone. The groundwater gradient is towards the east and Blackberry Creek.

<u>Riverton Shale</u>. Layers of the Riverton Shale (Shale) exhibited thicknesses ranging from approximately one foot to more than 10 feet. The Shale is generally dark gray to light gray. The Shale is mainly thin bedded with hardness ranging from soft to hard. Six packer tests were performed during the DSI to assess the hydraulic conductivity of the Shale. The packer test results ranged from approximately 3.2×10^{-6} cm/sec to 4.9×10^{-8} cm/sec. The packer test data indicates that the Shale is an effective confining unit.

According to the MDNR publication on the Pennsylvanian Subsystem in Missouri, the Riverton Shale formation is described as "dark gray to black, fine-grained, relatively brittle shale and contains as many as three coal beds, each of which is underlain by underclay" and "varies in thickness from a featheredge to more than 90 feet".

<u>Unnamed Coal</u>. The Shale includes coal seams in places that range in thickness from a few inches to approximately 1.5 feet. The coal is generally black to dark gray.

2.3 Groundwater Monitoring Network Design

The groundwater monitoring system for the CCR impoundment consists of nine (9) groundwater monitoring wells plus the recently installed MW-5AR. Two (2) wells are considered upgradient. Two (2) wells are considered sidegradient; one well is only monitored for groundwater elevation. The remaining five (5) wells are considered downgradient along with the recently installed MW-5AR.

The groundwater monitoring wells (MWs) at the Asbury Power Plant is equipped with individual dedicated poly tubing to be connected to a peristaltic pump/controller at the surface. Low-flow, micro-purge and sampling techniques and technology are utilized to collect groundwater samples from the subject wells. The groundwater sampling procedures are discussed in further detail below.

2.4 Groundwater Monitoring Network

The locations of the monitoring wells are shown in **Figure 2**. The groundwater monitoring system for the site consists of the following monitoring wells:

- MW-1 Sidegradient (water level only)
- MW-2 Upgradient
- MW-3 Upgradient
- MW-4 Downgradient
- MW-5 Downgradient
- MW-5A Downgradient
- MW-5AR Downgradient (background sampling)
- MW-6 Downgradient
- MW-6A Downgradient
- MW-7 Sidegradient

2.5 Seasonal Variation

Historical groundwater elevation data has been limited. However, adequate lengths of well screen have been utilized during the construction of the wells to accommodate typical seasonal groundwater elevation variations seen in southwest Missouri.

2.6 Groundwater Flow Direction

Historically, the seasonally high potentiometric surface indicated the groundwater flow direction to the east. **Figure 3** is a potentiometric map for this sampling event.

Originally MW-7 was thought to be a downgradient well but review of the potentiometric mapping from the eight background sampling events revealed that the well is a sidegradient well. Therefore, the designation for MW-7 has been changed from a downgradient to a sidegradient well for compliance monitoring.

3.0 BASELINE GROUNDWATER DATA

3.1 Baseline Data Collection

Per EPA CCR Rule § 257.94(b), the site initiated the detection monitoring program in January 2016 to include obtaining a minimum of eight (8) independent samples for each background and downgradient well. The eight (8) independent groundwater samples were obtained and analyzed as required by the CCR Rule per the baseline groundwater monitoring plan. Background groundwater data was collected from January 2016 to August 2017.

Groundwater Monitoring Reports were completed for each sampling event and have been placed in the Operating Record. Summary tables of the results from each event are included in **Appendix 2**. A listing of each event is below:

- January 2016
- March 2016
- May 2016
- August 2016
- October 2016
- March 2017
- June 2017
- August 2017

Initial baseline monitoring was required at all monitoring wells. The sampling frequency was quarterly or more frequently for the first two (2) years. After the background data plus the first semi-annual sampling events, a reduced lower sampling frequency replaced the quarterly events to semi-annual events. This lessened sampling frequency will be completed during the months of April/May/June and October/November/December. MW-5AR baseline monitoring started in May 2023 and will be completed semi-annually until eight (8) rounds of background sampling data are obtained.

The initial two (2) years of baseline and the first semi-annual detection monitoring included parameters listed in Appendix III and Appendix IV of the EPA CCR Rule. The constituents listed in Appendix IV were eliminated from the overall semi-annual detection monitoring plan after review of the first semi-annual groundwater sampling event analytical results in January 2018, according to the EPA CCR Rule. **Appendix 2** contains the list of constituents.

3.2 Background Data Analysis

Sanitas[™] for Groundwater was used to run the statistical analyses with settings used as recommended by the Sanitas[™] training course and user manual. The background data consisted of eight sampling events between January 2016 and August 2017 for both the Appendix III and IV constituents. Eight background events are needed for statistical analysis. An analysis of the Appendix III background data was conducted and is included in **Appendix 5**. Trending was found in Boron (MW-3) and Total Dissolved Solids (MW-3). MW-3 is an up-gradient well. Trending was not removed at that time; otherwise, the site would be below the minimum of eight background samples needed to run statistics.

Four more sets of background data were available to add to the background data set for the November 2019 sampling event and then four more sets for the November 2021 sampling event for a total of sixteen (16) background sets. Four more sets for the November 2023 sampling event

for a total of twenty (20) background sets for the November 2023 sampling event. The analysis of the additional data for the background data sets was conducted and is included in **Appendix 5**. No trending was found in any of the additional sets of data, so they were added to the baseline data set to increase the statistical power of the background data.

4.0 GROUNDWATER SAMPLING EVENT

On November 28 and 29, 2023, nine (9) groundwater monitoring wells were sampled by Midwest Environmental Consultants (MEC) for the EPA CCR Rule Appendix III parameters. In addition, MW-5AR was also sampled for Appendix III and Appendix IV parameters. For quality assurance and quality control measures, a duplicate sample was taken at MW-5. The sampling protocol and methodology was to be conducted in accordance with the facility's Sampling and Analysis Plan. **Table 1** provides a list of the analytical methods employed by the subcontracted laboratory.

Table 1 – Analytical Methods							
Method	Description						
9056A	Anions, Ion Chromatography						
6020A	Metals (ICP/MS)						
SM 2540C	Solids, Total Dissolved (TDS)						
Field Sampling	Field Sampling						

Appendix 3 includes Monitoring Well Field Inspection sheets and field notes. The physical integrity of the wells was good. During sample collection each of the wells was monitored for pump discharge and formation recharge. Initially, a static water level for each well was recorded (Table 2). To ensure sufficient recharge while sampling, static water levels were collected during pumping. Prior to sample collection, field parameters for each well were measured with a flow-through meter. When the field parameters stabilized, samples for analytical testing were collected and placed on ice for hand delivery to the laboratory. At the conclusion of sample collection from each well, a final static water level measurement was obtained. The samples were collected in the appropriately pre-preserved sample containers and placed on ice for delivery.

Table 2 - Groundwater Sampling Field Parameters Summary During November 2023 Sampling Event								
WELL	STATIC WA (ft-B1		PURGE RATE (mL/min)	STABILIZED pH				
ID .	Initial	Final	(11112/111111)	рп				
MW-1*	8.85	NA	NA	NA				
MW-2	4.33	6.35	200	5.76				
MW-3	2.87	2.90	200	5.77				
MW-4	9.37	14.48	200	6.65				
MW-5	0.5	9.77	200	7.16				
MW-5A	9.88	17.57	200	6.59				
MW-5AR	1.72	9.68	200	7.31				
MW-6	9.99	17.78	200	6.79				
MW-6A	9.17	16.89	200	6.33				
MW-7	6.15	7.80	200	6.18				

^{*} Water Level Only NA – Not Applicable

Appendix 4 includes the initial analytical results for the sampling event. Included with this analytical report are sample information; chain of custody; wet chemistry data; and volatile data.

5.0 DATA VALIDATION PROCEDURES FOR GROUNDWATER MONITORING DATA

Midwest Environmental Consultants receives Data Packages from the analytical laboratory (Eurofins). The internal quality control/quality assurance case narratives and reported data are then reviewed. Generally, the data validation procedures established by the U.S. Environmental Protection Agency *Contract Laboratory Program Functional Guidelines for Organic Data Review* and *Functional Guidelines for Inorganic Data Review* is followed. These guidelines are used to assign data qualifiers to the data. A formal data validation report for the site is not prepared; however, any significant issues are noted in the groundwater monitoring report.

MEC evaluates the data set for precision, accuracy, representativeness, comparability, and completeness (PARCC).

5.1 Precision

<u>Laboratory Precision</u>. Laboratory quality control procedures to measure precision consist of laboratory control sample (LCS) analysis and analysis of matrix spike/matrix spike duplicates (MS/MSD). These analyses are used to define analytical variability.

<u>Field Precision.</u> Analyses of duplicate samples are used to define the total variability (replicability) of the sampling/analytical system. Field replicates are collected at a rate of one per sampling event.

5.2 Accuracy

Accuracy is determined by calculating the percent recoveries for analyses of surrogate compounds, LCSs, continuing calibration check standards, and matrix spike samples. Acceptable percent recoveries are established for SW-846 and EPA methods. Field and laboratory blank analysis are also used to address measurement bias.

<u>Field Blanks.</u> Field blanks consisted of a trip blank and a field blank. One trip blank per cooler accompanies samples for volatile organic analyses.

<u>Laboratory Blanks.</u> Method blanks, artificial, matrix-less samples, are analyzed to monitor the laboratory analysis system for interferences and contamination from glassware, reagents, etc. Method blanks are taken through the entire sample preparation process. They are included with each batch of extractions or digestion prepared, or with each 20 samples, whichever is more frequent.

5.3 Representativeness

Representativeness expresses the degree to which sample data accurately and precisely reflects site condition. Representativeness of the data is determined by comparing actual sampling procedures to those delineated in the field sampling plan, comparing results from field replicate samples, and reviewing the results of field blanks. Field notes are reviewed as part of our data validation process.

5.4 Comparability

Comparability expresses the confidence with which one data set can be compared to another data set measuring the same property. Comparability is ensured by using established and approved sample collection techniques and analytical methods, consistent basis of analysis, consistent reporting units, and analyzing standard reference materials.

5.5 Completeness

Completeness is a measure of the amount of valid data obtained from a measurement system compared to the amount expected under controlled laboratory conditions. Completeness is defined as the valid data percentage of the total tests requested. Valid data are defined as those where the sample arrived at the laboratory intact, properly preserved, in sufficient quantity to perform the requested analyses, and accompanied by a completed chain-of-custody form. Furthermore, the sample must have been analyzed within the specified holding time and in such a manner that analytical QC acceptance criteria were met.

6.0 STATISTICAL ANALYSIS

6.1 Sampling Results

The constituents with results above the laboratory reporting limits are included in **Table 3**. This table also includes the recently installed MW-5AR. The Appendix IV results for MW-5AR are included in **Appendix 2**. The Eurofins laboratory analytical results are included in **Appendix 4**.

	Table 3 – Constituents During November 2023 Sampling Event										
Constituent	Units	MCL	MW-2 (up)	MW-3 (up)	MW-4 (down)	MW-5 (down)	MW-5A (down)	MW-5AR (down)	MW-6 (down)	MW-6A (down)	MW-7 (side)
Appendix III											
Boron	ug/L	NA	110	52	<50J	300	2400	400	400	360	300
Calcium	mg/L	NA	26	93	260	93	430	120	270	240	490
Chloride	mg/L	NA	150	57	4.6	6	230	28	30	86	44
Fluoride	mg/L	4.0	<1J	<1J	<1	<1J	<1	<1J	<1J	<1	<1
рН	SU	NA	5.76	5.77	6.65	7.16	6.59	7.31	6.79	6.33	6.18
Sulfate	mg/L	NA	96	480	630	170	1400	370	1100	1100	2000
Total Dissolved Solids	mg/L	NA	380	850	1500	590	3300	920	1900	2000	2800

NA = Not Applicable

<x = Less than reporting limit (nondetectable)</pre>

J = Trace value seen above minimum detection limit but below reporting limit (trace)

No constituents were detected above the Federal Safe Drinking Water maximum contaminant level (MCL) during the sampling event.

6.2 Statistical Analysis

Prediction interval analyses compare one or more observations to a limit set by background data. Interwell analyses compare observations from background wells, which include upgradient and sidegradient wells per EPA Unified Guidance definitions, and their relation to the observations for the downgradient wells. Intrawell analyses compare background observations to current observations of the same well. To appropriately characterize the groundwater beneath the site, the statistical methods utilized at the facility consider the following facts as they relate to site:

- Potential differences in geochemical characteristics of the groundwater caused by the differing lithologies in contact with the screened interval from well to well.
- Potential impacts of surface infiltration into the groundwater environment.

Due to varying geology in the state of Missouri, intrawell analyses had initially been deemed a more appropriate method. Municipal and demolition waste landfills in Missouri typically utilize intrawell prediction limits per MDNR. However, it was noted that the power curve for these analyses was not considered strong yet. The data set consisted of only 13 sampling events from January 2016 to November 2019. EPA Unified Guidance recommends 20 or more sampling events for background data for intrawell prediction limits. A small data set triggers an SSI when there is even a slight increase in concentration. Sanitas also note to each exceedance "Insufficient data to test for seasonality: data were not deseasonalized." Minor increases in concentration noted in the May and November 2019 sampling events did not result in any primary MCLs to be exceeded by any of the prediction limit exceedances during the sampling event, demonstrating that the groundwater has not been contaminated.

The EPA Unified Guidance Chapter 5.2.3 states "In groundwater data collection and testing, background conditions may not be static over time. Caution should be observed in removing observations which may signal a change in natural groundwater quality. Even when conditions have not changed, an apparently extreme measurement may represent nothing more than a portion of the background distribution that has yet to be observed. This is particularly true if the background data set contains fewer than 20 samples." Chapter 5.2.4 states "With such a small background sample, it can be difficult to develop an adequately powerful intrawell prediction level or control chart, even when retesting is employed (Chapter 19). Thus, additional background data will be needed to augment compliance well samples". Minor increases in concentrations did not result in any primary MCLs to be exceeded by any of the prediction limit exceedances during the sampling event, demonstrating that the groundwater has not been contaminated.

MDNR made several requests per EPA in the correspondence located in **Appendix 1** which included the EPA review of the groundwater reports as seen in **Table 4**.

	Table 4 – EPA Review of Groundwater Reports
Facility	Asbury Power Plant
Location	Asbury, MO
Owner	Empire District Electric Company
Units	Upper Pond-unlined, South Pond-unlined, Lower Pond-unlined
Geology	Surficial unit of clay, clayey sand, and silt approximately 15 to 25 feet thick underlain by Warner Sandstone approximately 25-30 feet thick in the southern portion of the site and the Riverton Shale in the northern area of the site
Problematic Use of Intra Well Comparisons	Analytical results indicate consistent differences in contaminant concentrations between upgradient and downgradient wells. Consequently, interwell comparisons are feasible and would be preferable in the absence of compelling reasons to use intra well analysis
Problematic Alternate Source Determination	
Conclusions	While there are no boring logs in the documents to confirm that the wells are screened in the same geologic unit, consistency in the field parameters and the description of the geology suggest that the wells are screened in the sandstone. The analytical results indicate consistent differences in contaminant concentrations between upgradient and downgradient wells, consequently, interwell comparisons are feasible and would be preferable in the absence of compelling reasons to use intra wells analyses

Sanitas[™] for Groundwater was used to run the statistical analyses with settings used as recommended by the Sanitas[™] training course and user manual. Interwell prediction intervals were run per EPA's request. The Sanitas[™] output is included in **Appendix 5**.

The November 2019 sampling event report indicated confirmed intrawell prediction limits exceedances. Intrawell prediction limits were utilized per the facility's 2018 Groundwater Statistical Analysis Plan. The Annual Report recommending the site move into assessment monitoring was stamped on January 23, 2020, and submitted to the facility. However, in February

MEC received an email from the facility. MDNR had forwarded EPA correspondence requesting that the site change their statistical evaluation method to interwell prediction limits. EPA CCR Rule 40 CFR § 257.94(e)(2) allows at alternative source demonstration to be completed if the statistically significant increases are result of the statistical evaluation rather than from a release from the facility. Appendix 1 contains the MDNR/EPA correspondence.

Statistical analysis was performed on the Appendix III constituents from the sampling event compared to the updated background dataset. Prediction interval analyses compare one or more observations to a limit set by background data. Interwell analyses compare observations from upgradient background wells and their relation to the observations for the downgradient wells. Intrawell analyses compare background observations to current observations of the same well. Due to varying geology in the state of Missouri, intrawell analyses had initially been deemed a more appropriate method. However, EPA has requested the site utilize interwell prediction limits.

Statistical analysis results are presented below for those constituents determined to have exceeded a prediction limit. However, EPA's "Unified Guidance Document: Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities," March 2009, EPA 530/R-09-007 is referenced multiple times in the preamble of the EPA CCR regulations for groundwater sampling and analysis requirements. According to the EPA Unified Guidance, a prediction limit exceedance is not considered a statistically significant increase (SSI) until it is confirmed through retesting. SSIs generated by non-detectable results or with less than eight background events are considered statistically invalid.

Table 5 lists the parameters with exceedances of prediction limits during the sampling event, the associated monitoring wells, if the exceedance is initial versus confirmed, the predicted limit, the measured concentration, and the MCL set forth in the National Drinking Water Regulations. The MCL is the highest level of a contaminant that is allowed in drinking water.

Recently install MW-5AR is still gathering background data and no statistics were completed on this well.

	Table 5 – Interwell Prediction Limit Exceedances Observed											
During November 2023 Sampling Event												
Constituent Molt Confirmed Limit Consentration Water MCLs												
	Well Confirmed Limit Concentration Water MCLs											
Boron (mg/L)	MW-5A	Confirmed	0.9	2.4	NA							
Chloride (mg/L)	MW-5A	Initial	180	230	NA							
Total Dissolved Solids (mg/L)	MW-5A	Confirmed	3100	3300	NA							

NA = Not Applicable

6.3 Results Interpretation

November 2023

There was one initial interwell prediction limit exceedance for chloride (MW-5A) in the listed monitoring well during November 2023 sampling event. During the November 2023 sampling event, interwell prediction exceedances in boron (MW-5A) and total dissolved solids (MW-5A)

^{*}Field Sampled (less precise but within the required hold time)

were confirmed from the May 2023 sampling event. There are no current primary (health based) MCLs for boron or total dissolved solids. The facility will resample as part of the May 2024 sampling event.

It was noted during sampling that water levels were significantly lower than normally seen due to drought conditions. The drought should be considered excessive. Governor Mike Parson declared at state of emergency in Missouri for drought conditions starting on July 21, 2022. **Table 6** shows the drop in elevation between the May 2022 and November 2023 sampling events.

	Table 6	- Groundwa	ter Sampling	Comparison	
WELL	NOVEMBI STATIC WAT (ft-BT	ER LEVEL	STATIC W	GHT MAY 2022 /ATER LEVEL BTOC)	DIFFERENCE IN INTIAL LEVELS
	Initial	Final	Initial	Final	(ft-BTOC)
MW-1*	8.85	8.85 NA		NA	3.44
MW-2	4.33	6.35	3.07	4.87	1.26
MW-3	2.87	2.90	0.5	0.7	2.37
MW-4	9.37	14.48	5.83	12.93	3.54
MW-5	0.5	9.77	1.82	13.39	-1.32
MW-5A	9.88	17.57	9.50	19.43	0.38
MW-5AR	1.72	9.68	NA	NA	NA
MW-6	9.99	17.78	8.86	18.07	1.13
MW-6A	9.17	16.89	7.93	18.20	1.24
MW-7	6.15	7.80	3.15	3.32	3.00

The results of the interwell prediction limit statistical analysis of the November 2020, May 2021, November 2021, May 2022, November 2022, and May 2023 sampling events indicate a confirmed exceedance for Boron (MW-5A). EPA CCR Rule 40 CFR § 257.94(e)(2) allows an Alternative Source Demonstration (ASD) that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality for a constituent found in a monitoring well. This ASD was completed in April 2021 and placed in the operating record. The ASD found the statistically significant increase resulted from an error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality instead of a release to groundwater.

The ASD theorized that this SSI was an issue with the location of the well rather than from a release from the facility. This alternative source demonstration confirmed that MW-5A may be impacted by its placement upgradient of a historic dewatering trench and cutoff trench. The ASD proposed a replacement well for MW-5A be installed downgradient of the dewatering trench and cutoff trench system. The new replacement well MW-5AR was installed prior to the May 2023 sampling event and the initial sampling results were compared to the existing MW-5A. Review of initial sampling results indicate that the theory may be correct. Monitoring of both MW-5A and MW-5AR will continue until the eight needed baseline samples are collected for MW-5AR and statistical analysis can begin. Sampling of MW-5A will then cease.

Based upon these findings the site will not need to move into the assessment monitoring program at this time and will continue with the detection monitoring program per the EPA CCR Rule (§ 257.94) on a semi-annual basis.

Below is a discussion of the previous results for comparison.

May 2023

There was one initial interwell prediction limit exceedance for Total Dissolved Solids (MW-5A) in the listed monitoring well during May 2023 sampling event. During the May 2023 sampling event, interwell prediction exceedances in boron (MW-5A) and pH (MW-5) were confirmed. There are no current primary (health based) MCLs for pH, but the confirmed pH results are still within the acceptable range of 6.5 to 9 SU. The facility will resample as part of the November 2023 sampling event. The results of the interwell prediction limit statistical analysis of the November 2020, May 2021, November 2021, May 2022, November 2022, and May 2023 sampling events indicate a confirmed exceedance for Boron (MW-5A). EPA CCR Rule 40 CFR § 257.94(e)(2) allows an Alternative Source Demonstration (ASD) that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality for a constituent found in a monitoring well. This ASD was completed in April 2021 and placed in the operating record. The ASD found the statistically significant increase resulted from an error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality instead of a release to groundwater. The ASD theorized that this SSI was an issue with the location of the well rather than from a release from the facility. This alternative source demonstration confirmed that MW-5A may be impacted by its placement upgradient of a historic dewatering trench and cutoff trench. The ASD proposed a replacement well for MW-5A be installed downgradient of the dewatering trench and cutoff trench system. The new replacement well MW-5AR was installed prior to the May 2023 sampling event and the initial sampling results were compared to the existing MW-5A. Review of initial sampling results indicate that the theory may be correct. Monitoring of both MW-5A and MW-5AR will continue until the eight needed baseline samples are collected for MW-5AR and statistical analysis can begin. Sampling of MW-5A will then cease. Based upon these findings the site will not need to move into the assessment monitoring program at this time and will continue with the detection monitoring program per the EPA CCR Rule (§ 257.94) on a semi-annual basis. As part of this well installation maintenance of the entire groundwater monitoring well system was also completed. This included the installation of new concrete well pads, protective covers, and protective bollards. The well riser pipe was also modified for well cap installation. New as-built survey data was obtained and will be utilized in this and future reports.

November 2022

There was no initial interwell prediction limit exceedances for the listed monitoring well during November 2022 sampling event. During the November 2022 sampling event, interwell prediction exceedances in boron (MW-5A) and pH (MW-5) were confirmed. There are no current primary (health based) MCLs for pH, but the confirmed pH results are still within the acceptable range of 6.5 to 9 SU. The facility will resample as part of the May 2023 sampling event. It was noted during sampling that water levels were significantly lower than normally seen due to drought conditions. The drought should be considered excessive. Governor Mike Parson declared at state of emergency in Missouri for drought conditions on July 21, 2022. **Table 7** shows the drop in elevation between the May 2022 and November 2022 sampling events.

	Table 7	- Groundwate	r Sampling (Comparison	
WELL ID	STATIC W	BER 2022 ATER LEVEL BTOC)	STATIC W	Y 2022 /ATER LEVEL BTOC)	DIFFERENCE IN INTIAL LEVELS
	Initial	Final	Initial	Final	(ft-BTOC)
MW-1*	9.72	NA	5.41	NA	4.31
MW-2	3.76	6.43	3.07	4.87	0.69
MW-3	3.57	3.64	0.5	0.7	3.07
MW-4	8.39	13.98	5.83	12.93	2.56
MW-5	1.31	11.17	1.82	13.39	-0.51
MW-5A	11.22	20.88	9.50	19.43	1.72
MW-6	10.66	19.86	8.86	18.07	1.8
MW-6A	9.40	18.30	7.93	18.20	1.47
MW-7	6.42	6.50	3.15	3.32	3.27

The results of the interwell prediction limit statistical analysis of the November 2020, May 2021, November 2021, May 2022, and November 2022 sampling events indicate a confirmed exceedance for Boron (MW-5A). EPA CCR Rule 40 CFR § 257.94(e)(2) allows an Alternative Source Demonstration (ASD) that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality for a constituent found in a monitoring well. This ASD was completed in April 2021 and placed in the operating record. The ASD found the statistically significant increase resulted from an error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality instead of a release to groundwater. The ASD theorizes that this SSI is an issue with the location of the well rather than from a release from the facility. This alternative source demonstration confirms that MW-5A may be impacted by its placement upgradient of a historic dewatering trench and cutoff trench. The ASD proposes a replacement well for MW-5A be installed downgradient of the dewatering trench and cutoff trench system. The new replacement well will be monitored and compared to the existing MW-5A to determine if the theory is correct. Based upon these findings the site did not need to move into the assessment monitoring program at this time and will continue with the detection monitoring program per the EPA CCR Rule (§ 257.94) on a semi-annual basis.

May 2022

There was no initial interwell prediction limit exceedances for the listed monitoring well during May 2022 sampling event. During the May 2022 sampling event, interwell prediction exceedances in boron (MW-5A) and pH (MW-5, MW-6 and MW-6A) were confirmed. There are no current primary (health based) MCLs for pH, but the confirmed pH results are still within the acceptable range of 6.5 to 9 SU. The facility will resample as part of the November 2022 sampling event. The results of the interwell prediction limit statistical analysis of the November 2020, May 2021, November 2021, and May 2022 sampling events indicate a confirmed exceedance for Boron (MW-5A). EPA CCR Rule 40 CFR § 257.94(e)(2) allows an Alternative Source Demonstration (ASD) that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality for a constituent found in a monitoring well. This ASD was completed in April 2021 and placed in the operating record. The ASD found the statistically significant increase resulted from an error in sampling, analysis, statistical evaluation, or natural

variation in groundwater quality instead of a release to groundwater. The ASD theorizes that this SSI is an issue with the location of the well rather than from a release from the facility. This alternative source demonstration confirms that MW-5A may be impacted by its placement upgradient of a historic dewatering trench and cutoff trench. The ASD proposes a replacement well for MW-5A be installed downgradient of the dewatering trench and cutoff trench system. The new replacement well will be monitored and compared to the existing MW-5A to determine if the theory is correct. Based upon these findings the site did not need to move into the assessment monitoring program at this time and will continue with the detection monitoring program per the EPA CCR Rule (§ 257.94) on a semi-annual basis.

November 2021

There was no initial interwell prediction limit exceedances for the listed monitoring well during November 2021 sampling event. During the November 2021 sampling event, interwell prediction exceedances in boron (MW-5A) and pH (MW-5, MW-6 and MW-6A) were confirmed. There are no current primary (health based) MCLs for pH, but the confirmed pH results are still within the acceptable range of 6.5 to 9 SU. The facility will resample as part of the May 2022 sampling event. The results of the interwell prediction limit statistical analysis of the November 2020, May 2021 and November 2021 sampling events indicate a confirmed exceedance for Boron (MW-5A). EPA CCR Rule 40 CFR § 257.94(e)(2) allows an Alternative Source Demonstration (ASD) that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality for a constituent found in a monitoring well. This ASD was completed in April 2021 and placed in the operating record. The ASD found the statistically significant increase resulted from an error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality instead of a release to groundwater. The ASD theorizes that this SSI is an issue with the location of the well rather than from a release from the facility. This alternative source demonstration confirms that MW-5A may be impacted by its placement upgradient of a historic dewatering trench and cutoff trench. The ASD proposes a replacement well for MW-5A be installed downgradient of the dewatering trench and cutoff trench system. The new replacement well will be monitored and compared to the existing MW-5A to determine if the theory is correct. Based upon these findings the site did not need to move into the assessment monitoring program at this time and will continue with the detection monitoring program per the EPA CCR Rule (§ 257.94) on a semi-annual basis.

May 2021

There was no initial interwell prediction limit exceedances for the listed monitoring well during May 2021 sampling event. During the November 2020 sampling event, Initial interwell prediction exceedances in pH (MW-5, MW-6 and MW-6A) and total dissolved solids (MW-5A) were noted. However, the initial prediction limit exceedance of total dissolved solids (MW-5A) was not confirmed during the May 2020 sampling event. There are no current primary (health based) MCLs for pH, but the confirmed pH results are still within the acceptable range of 6.5 to 9 SU. The facility plans to resample as part of the November 2021 sampling event. The results of the interwell prediction limit statistical analysis of the November 2020 and May 2021 sampling events indicate a confirmed exceedance for Boron (MW-5A). EPA CCR Rule 40 CFR § 257.94(e)(2) allows an Alternative Source Demonstration (ASD) that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality for a constituent found in a monitoring well. This ASD was completed in April 2021 and placed in the operating record. The ASD found the statistically significant increase resulted from an error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality instead of a

release to groundwater. The ASD theorizes that this SSI is an issue with the location of the well rather than from a release from the facility. This alternative source demonstration confirms that MW-5A may be impacted by its placement upgradient of a historic dewatering trench and cutoff trench. The ASD proposes a replacement well for MW-5A be installed downgradient of the dewatering trench and cutoff trench system. The new replacement well will be monitored and compared to the existing MW-5A to determine if the theory is correct. Based upon these findings the site did not need to move into the assessment monitoring program at this time and will continue with the detection monitoring program per the EPA CCR Rule (§ 257.94) on a semi-annual basis.

November 2020

The results of the EPA requested interwell prediction limit statistical analysis of the November 2020 sampling event indicate a confirmed exceedance for Boron (MW-5A). Boron does not have a MCL. The facility will conduct an alternative source demonstration in the next 90 days per the EPA CCR Rule (§ 257.94). The results for pH (MW-5, MW-6 and MW-6A) and total dissolved solids (MW-5A) indicated initial interwell prediction limit exceedances for the listed monitoring well during November 2020 sampling event. There are no current primary (health based) MCLs for pH or total dissolved solids. The facility plans to resample as part of the May 2021 sampling event. During the May 2020 sampling event, Initial interwell prediction exceedances in boron (MW-5A and MW-6A) and fluoride (MW-5A) were noted. However, the initial prediction limit exceedances of boron (MW-6A) and fluoride (MW-5A) were not confirmed during the November 2020 sampling event.

May 2020

The results of the EPA requested interwell prediction limit statistical analysis of the May 2020 sampling event indicate that the site is in compliance. The results for boron (MW-5A and MW-6A) and fluoride (MW-5A) indicated an initial interwell prediction limit exceedance for the listed monitoring well during May 2020 sampling event. There is a current primary (health based) MCL for fluoride of 4.0 mg/L but the result is below the limit. Boron does not have a MCL but does have an EPA proposed groundwater protection standard of 4.0 mg/L but all results were below that limit. Trending was found to be significant for boron (MW-5A) but not significant in boron (MW-6A) and fluoride (MW-5A). Boron is also trending upward in MW-2 which is an up-gradient well. The facility plans to resample as part of the November 2020 sampling event. During the November 2019 sampling event, Initial interwell prediction exceedances in pH (MW-4, MW-5, MW-5A, MW-6 and MW-6A) were noted. However, these initial prediction limit exceedances were not confirmed during the May 2020 sampling event.

November 2019

The result for Chloride (MW-5A), pH (MW-4) and Sulfate (MW-5A) indicated an initial intrawell prediction limit exceedance for the listed monitoring well during the November 2019 sampling event. There is no current primary (health based) MCL for chloride, pH, or sulfate. During May 2019, the result for Boron (MW-5A) indicated an initial intrawell prediction limit exceedance and Total Dissolved Solids (MW-5A) indicated a confirmed intrawell prediction limit exceedance. There is no current primary (health based) MCL for boron and total dissolved solids. These prediction limit exceedances were confirmed during the November 2019 sampling event. A resample of MW-5A was conducted on December 11, 2019. The results of the resampling confirmed the exceedances and the site planned to move into assessment monitoring. However, in February MEC received an email from the facility. MDNR had forwarded EPA correspondence

requesting that the site change their statistical evaluation method to interwell prediction limits. EPA CCR Rule 40 CFR § 257.94(e)(2) allows at alternative source demonstration to be completed if the statistically significant increases are result of the statistical evaluation rather than from a release from the facility. **Appendix 1** contains the MDNR/EPA correspondence. The results of the EPA requested interwell prediction limit statistical analysis of the November 2019 sampling event indicate that the site is in compliance. Initial interwell prediction exceedances in pH (MW-4, MW-5, MW-5A, MW-6 and MW-6A) were noted but have not been confirmed. There is no current primary (health based) Maximum Contamination Level (MCL) for pH. Trending was not found to be significant for pH in any well during the analysis of the background data set.

May 2019

The result for Boron (MW-5A) and pH (MW-3(u), MW-5A, MW-6 and MW-6A) indicated an initial intrawell prediction limit exceedance for the listed monitoring well during the May 2019 sampling event. There is no current primary (health based) MCL boron or pH. The facility plans to resample as part of the November 2019 sampling event. During November 2018, the result for Total Dissolved Solids (MW-5A) indicated an initial intrawell prediction limit exceedance. There is no current primary (health based) MCL for total dissolved solids. This initial prediction limit exceedances were confirmed during the May 2019 sampling event. However, it should be noted that the power curve for these analyses is not considered strong. A small data set triggers an SSI when there is even a slight increase in concentration. The EPA Unified Guidance Chapter 5.2.4 states "With such a small background sample, it can be difficult to develop an adequately powerful intrawell prediction level or control chart, even when retesting is employed (Chapter 19). Thus, additional background data will be needed to augment compliance well samples". Minor increases in concentrations did not result in any primary MCLs to be exceeded by any of the prediction limit exceedances during the sampling event, demonstrating that the groundwater has not been contaminated. It was also noted that higher levels of total dissolved solids were seen in the side-gradient well MW-7 demonstrating that there was likely not a release from the facility. Therefore, the site will continue with detection monitoring on a semi-annual basis at this time.

November 2018

The result for Total Dissolved Solids (MW-5A) indicated an initial intrawell prediction limit exceedance for the listed monitoring well during the November 2018 sampling event. There is no current primary (health based) MCL for total dissolved solids. The facility plans to resample MW-5A for Total Dissolved Solids as part of the May 2019 sampling event. During May 2018, no intrawell prediction limits were exceeded. Therefore, there were no initial prediction limit exceedances to confirm during the November 2018 sampling event.

May 2018

No intrawell prediction limits were exceeded during the May 2018 sampling event. The October 2017 results for Total Dissolved Solids (MW-7) indicated an exceedance of the predicted limit for the listed monitoring wells. However, this initial prediction limit exceedance was not confirmed during the May 2018 sampling event.

October 2017

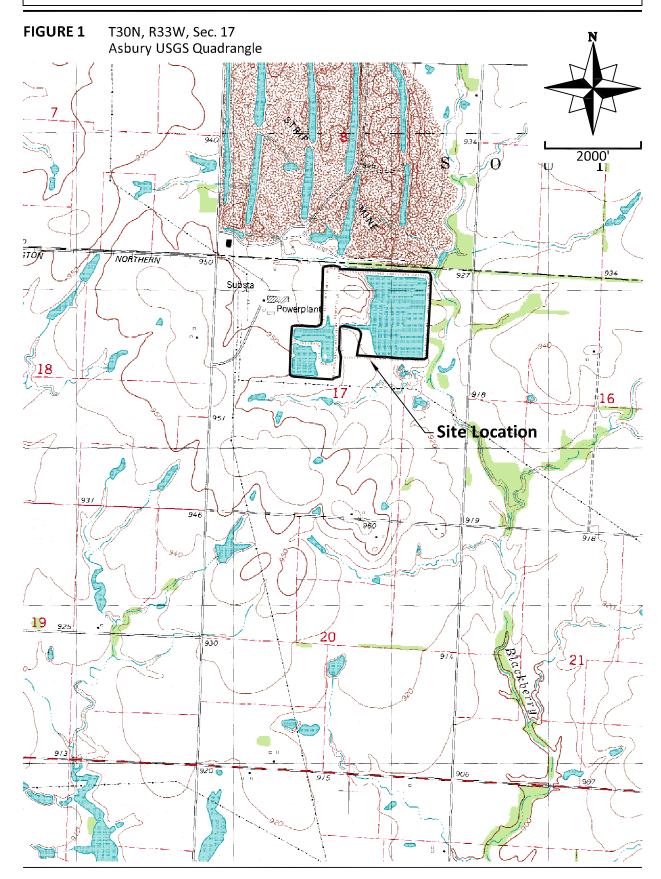
The result for Total Dissolved Solids (MW-7) indicated an initial intrawell prediction limit exceedance for the listed monitoring wells during the October 2017 sampling event. However, the result was below the tolerance limit. There is no current primary (health based) MCL for total dissolved solids. Review of the Total Dissolved Solids in the duplicate sample taken from the same

well (MW-7) shows a result of 3,000 mg/L, which would not be an exceedance of the intrawell prediction limit of 3,069 mg/L. Due to the variances between the sample and the duplicate, the site will re-evaluate MW-7 for Total Dissolved Solids during the next sampling event. MW-7 is considered a sidegradient well, therefore no further action is needed for exceedances in sidegradient or upgradient wells.

6.4 Proposed Actions

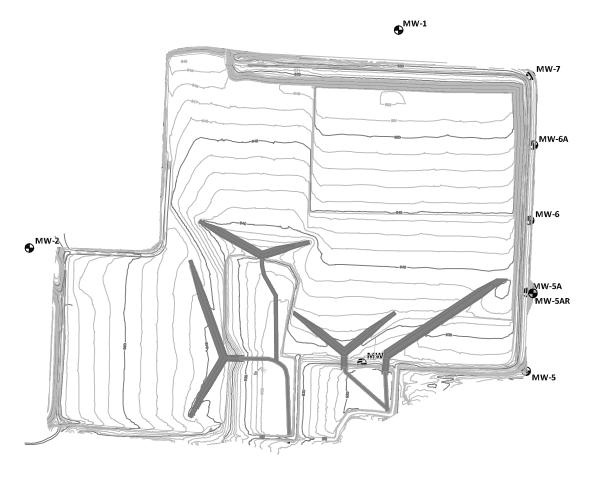
Statistical analysis will continue to be completed with interwell prediction limits per EPA's request. The results of the EPA requested interwell prediction limit statistical analysis of the November 2020, May 2021, November 2021, May 2022, November 2022 and May 2023 sampling events indicate a confirmed exceedance for Boron (MW-5A). EPA CCR Rule 40 CFR § 257.94(e)(2) allows an Alternative Source Demonstration (ASD) that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality for a constituent found in a monitoring well. This ASD was completed in April 2021 and placed in the operating record. The ASD found the statistically significant increase resulted from an error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality instead of a release to groundwater.

The ASD theorized that this SSI was an issue with the location of the well rather than from a release from the facility. This alternative source demonstration confirmed that MW-5A may be impacted by its placement upgradient of a historic dewatering trench and cutoff trench. The ASD proposed a replacement well for MW-5A be installed downgradient of the dewatering trench and cutoff trench system. The new replacement well MW-5AR was installed prior to the May 2023 sampling event and the initial sampling results were compared to the existing MW-5A. Review of initial sampling results indicate that the theory may be correct. Monitoring of both MW-5A and MW-5AR will continue until the eight needed baseline samples are collected for MW-5AR and statistical analysis can begin. Sampling of MW-5A will then cease.


Based upon these findings the site does not need to move into the assessment monitoring program at this time and will continue with the detection monitoring program per the EPA CCR Rule (§ 257.94) on a semi-annual basis.

FIGURES

Asbury Generating Station CCR Impoundment Groundwater Sampling Event - November 2023 Site Location Map

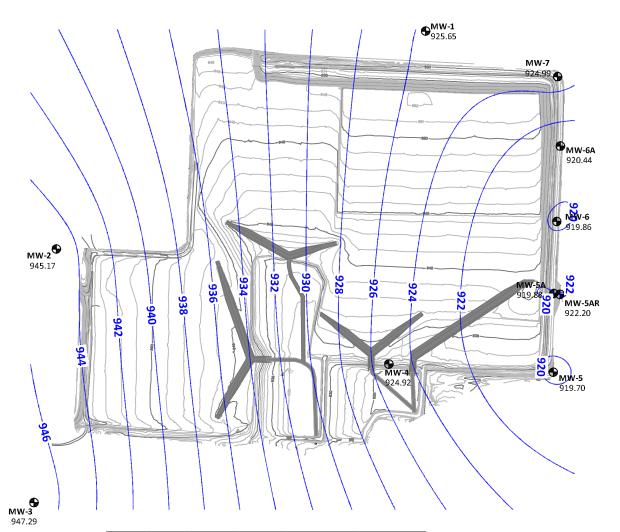


Asbury Generating Station CCR Impoundment Groundwater Sampling Event - November 2023 Groundwater Monitoring System

FIGURE 2

Well ID	Northing	Easting
MW-1	435789.71	2765168.83
MW-2	434428.56	2762861.43
MW-3	432844.71	2762721.27
MW-4	433709.70	2764938.79
MW-5	433659.19	2765966.39
MW-5A	434150.39	2765969.77
MW-5AR	434145.71	2766008.17
MW-6	434600.94	2765988.47
MW-6A	435071.72	2766010.58
MW-7	435505.31	2765993.01

Legend



Asbury Generating Station CCR Impoundment

Groundwater Sampling Event - November 2023 Groundwater Piezometric Surface Map

FIGURE 3

Well ID	Northing	Easting	Top Of Casing	Static Water Level (BTOC)	Static Water Level
MW-1	435789.71	2765168.83	934.50	8.85	925.65
MW-2	434428.56	2762861.43	949.50	4.33	945.17
MW-3	432844.71	2762721.27	950.16	2.87	947.29
MW-4	433709.70	2764938.76	934.29	9.37	924.92
MW-5	433659.19	2765966.39	920.20	0.50	919.70
MW-5A	434150.39	2765969.77	929.76	9.88	919.88
MW-5AR	434145.71	2766008.17	923.92	1.72	922.20
MW-6	434600.94	2765988.47	929.85	9.99	919.86
MW-6A	435071.72	2766010.58	929.61	9.17	920.44
MW-7	435505.31	2765993.01	931.14	6.15	924.99

Legend

Monitoring Well

APPENDIX 1

EPA/MDNR Correspondence

Missouri Department of

dnr.mo.gov

NATURAL RESOURCES

Eric R. Greitens, Governor

Carol S. Comer, Director

NOV 0.2 2017

Mr. Kavan Stull, Senior Environmental Coordinator Empire District 602 South Joplin Avenue Joplin, MO 64802

RE: Site Characterization Workplan

Dear Mr. Stull:

The Missouri Department of Natural Resources has reviewed the document "Site Characterization Workplan" dated May 16, 2017. The site has undergone extensive characterization regarding construction of a coal combustion residual (CCR) landfill near the CCR impoundments. The department's Water Protection Program has determined, through consulting with the Missouri Geological Survey, this characterization is sufficient and may be used in whole to complete the required monitoring of the sub-surface conditions at the site. Additional submittal of site characterization is not necessary, as the previous submittal meets the requirement for special condition 19(b) of the Missouri State Operating Permit MO-0095362. The facility may proceed with the next step laid out in the permit; special condition 19(c). Enclosed is the Missouri Geological Survey concurrence.

If you were adversely affected by this decision, you may be entitled to an appeal before the Administrative Hearing Commission (AHC) pursuant to 10 CSR 20 1.020 and Section 621.250, RSMo. To appeal, you must file a petition with the AHC within 30 days after the date this decision was mailed or the date it was delivered, whichever date was earlier. If any such petition is sent by registered mail or certified mail, it will be deemed filed on the date it is mailed; if it is sent by any method other than registered mail or certified mail, it will be deemed filed on the date it is received by the AHC. Contact information for the AHC is by mail at Administrative Hearing Commission, United States Post Office Building, Third Floor, 131 West High Street, P.O. Box 1557, Jefferson City, MO 65102, by phone at 573-751-2422, by fax at 573-751-5018, and by website at www.oa.mo.gov/ahc.

Mr. Kavan Stull Page 2

If you have any questions, please do not hesitate to contact Ms. Pam Hackler by mail at Department of Natural Resources, Water Protection Program, P.O. Box 176, Jefferson City, MO 65102-0176, by phone at 573-526-3386; or by email at pam.hackler@dnr.mo.gov. Thank you.

Sincerely,

WATER PROTECTION PROGRAM

Michael J. Abbott, Chief Operating Permits Section

MJA/php

Enclosure

c: Mr. Randall Willoughby, Southwest Regional Office

MEMORANDUM

DATE:

October 18, 2017

SWR18011 Jasper County

TO:

Pam Hackler- WPP- Industrial Wastewater Unit

FROM:

Fletcher N. Bone, Geologist, Environmental Geology Section, Geological Survey Program,

MGS

SUBJECT:

Site characterization for existing CCR

impoundments

Asbury Power Plant Site Characterization Work

Plan- CCR

37 21 22.66 Latitude, -94 35 4.79 Longitude,

Jasper County, Missouri

October 18, 2017

The Missouri Geological Survey (MGS) has reviewed the documents titled, 'NPDES Permit MO-0095362 Asbury Power Plant, Jasper County, Missouri, Site Characterization Work Plan', prepared by Empire District Electric Company, dated September 8, 2017 and 'Site Characterization Work Plan, Coal Combustion Residuals Impoundments, Empire Electric Facility - Permit MO-0095362, Jasper County, Missouri, Geotechnology Project No. J021738.03', prepared by Geotechnology Inc., dated May 16, 2017. The MGS offers the following comment.

General Comment:

The MGS agrees that the existing Coal Combustion Residuals (CCR) impoundments (site 1) do not need further site characterization, at this time. The site characterization performed, as described in the Detailed Site Investigation Report (DSI), dated January 21, 2015, at the proposed CCR impoundment (site 2) that is approximately 1,000 feet south of the existing CCR impoundments (site 1), coupled with the geologic and hydrologic data provided that pertains to the existing CCR impoundments (site 1) (1996 to present data), provides adequate characterization of the geology and hydrology of the site 1. The geologic and hydrologic settings of both sites are similar, with geologic boring logs and potentiometric data of both sites being compared. The hydraulic conductivity testing conducted at the proposed CCR site (site 2) has demonstrated that there is a low potential for groundwater contamination for this area.

If you are in need of further assistance from our office or have questions regarding this evaluation please feel free to contact me at (573) 368-2161.

APPENDIX 2

Baseline Sampling Information

EPA CCR Rule

Appendix III to Part 257—Constituents for Detection Monitoring

Boron

Calcium

Chloride

Fluoride

рΗ

Sulfate

Total Dissolved Solids (TDS)

Appendix IV to Part 257—Constituents for Assessment Monitoring

Antimony

Arsenic

Barium

Beryllium

Cadmium

Chromium

Cobalt

Lead

Lithium

Mercury

Molybdenum

Selenium

Thallium

Radium 226 and 228 combined

1st Baseline Event – January 2016 Sampling Event

Constituent	Units	MCL	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6	MW-6A	MW-7
			II	Append	lix III					
Boron	mg/L	NA	0.33	<0.5 J	<0.05 J	<0.5 J	<0.5 J	<0.5 J	<0.5 J	<0.5 J
Calcium	mg/L	NA	57	74	220	84	200	250	140	570
Chloride	mg/L	NA	140	83	120	4.7	28	10	38	38
Fluoride	mg/L	4	0.43	0.47	0.31	0.28	0.30	0.24	0.35	<0.2 J
рН	SU	NA	6.33	5.81	6.31	7.33	7.09	6.97	7.09	6.51
Sulfate	mg/L	NA	260	360	1100	140	800	1000	600	1800
Total Dissolved Solids	mg/L	NA	690	790	1900	590	1500	1800	1300	2800
				Append	lix IV					
Antimony	mg/L	0.006	<0.002	<0.002 J						
Arsenic	mg/L	0.01	<0.002 J	0.01	<0.01 J	<0.02 J	<0.01	<0.01	<0.01	<0.01
Barium	mg/L	2	0.044	0.0099	0.065	0.086	0.036	0.02	0.042	0.011
Beryllium	mg/L	0.004	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Cadmium	mg/L	0.005	0.0012	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Chromium	mg/L	0.1	<0.002 J	<0.002 J	<0.01 J	<0.01 J	<0.01 J	<0.01 J	<0.01	<0.01
Cobalt	mg/L	NA	<0.01 J	<0.01 J	0.046	<0.002 J	0.018	0.0022	0.02	0.014
Lead	mg/L	0.015	<0.002 J	<0.002	<0.01 J	<0.002 J	<0.002	<0.002	<0.002	<0.002 J
Lithium	mg/L	NA	0.057	0.15	<0.05 J	<0.5 J	<0.5 J	<0.5 J	<0.5 J	<0.5 J
Mercury	mg/L	0.002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Molybdenum	mg/L	NA	<0.002	<0.002 J	<0.002 J	<0.002 J	<0.01 J	<0.002	<0.01 J	<0.002
Selenium	mg/L	0.05	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Thallium	mg/L	0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Combined Radium	pCi/L	5	<0.477 J	<0.427 J	<2.08	<0.563 J	<0.392 J	<0.446 J	<0.306 J	<0.279 J

<x = Less than reporting limit (nondetectable)</pre>

J = Trace value seen above minimum detection limit but below reporting limit (trace)

2nd Baseline Event – March 2016 Sampling Event

Constituent	Units	MCL	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6	MW-6A	MW-7
				Append	dix III					
Boron	mg/L	NA	0.90	0.060	<0.25	0.29	0.29	0.34	0.34	0.29
Calcium	mg/L	NA	120	92	260	94	190	250	160	620
Chloride	mg/L	NA	180	70	15	4.4	23	9.0	36	34
Fluoride	mg/L	4	0.28	0.28	0.10	0.38	0.31	0.23	0.31	0.16
рН	SU	NA	5.82	5.68	6.72	7.15	6.94	6.79	6.98	6.22
Sulfate	mg/L	NA	570	400	570	140	710	970	550	1800
Total Dissolved Solids	mg/L	NA	1300	840	1600	590	1500	1800	1200	2900
				Append	lix IV					
Antimony	mg/L	0.006	<0.002	<0.002	<0.002	<0.002	<0.002 J	<0.002	<0.002 J	<0.002
Arsenic	mg/L	0.01	<0.002 J	0.024	0.0038	<0.002 J	0.0038	0.0026	0.0025	0.004
Barium	mg/L	2	0.060	0.012	0.034	0.047	0.042	0.026	0.051	0.0089
Beryllium	mg/L	0.004	<0.002	<0.002 J	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Cadmium	mg/L	0.005	0.0028	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Chromium	mg/L	0.1	<0.002	<0.002 J	0.0034	<0.002	<0.002	<0.002	<0.002	<0.002
Cobalt	mg/L	NA	0.017	0.0095	0.021	<0.002 J	0.02	0.0061	0.0063	0.016
Lead	mg/L	0.015	<0.002 J	<0.002 J	<0.002 J	<0.002	<0.002	<0.002	<0.002	<0.002
Lithium	mg/L	NA	0.20	0.15	0.074	0.074	0.14	0.22	0.14	0.30
Mercury	mg/L	0.002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Molybdenum	mg/L	NA	<0.002	<0.002 J	<0.002	<0.002 J	0.0041	<0.002 J	0.0038	<0.002
Selenium	mg/L	0.05	<0.002	<0.002	<0.002	0.0021	0.0028	0.0031	0.0031	<0.002
Thallium	mg/L	0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Combined Radium	pCi/L	5	<0.337 J	<0.389 J	<0.84 J	<0.315 J	<0.336 J	<0.319 J	<0.348 J	<0.329 J

<x = Less than reporting limit (nondetectable)</pre>

J = Trace value seen above minimum detection limit but below reporting limit (trace)

3rd Baseline Event – May 2016 Sampling Event

Constituent	Units	MCL	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6	MW-6A	MW-7
				Append	dix III					
Boron	mg/L	NA	0.21	0.044	0.027	0.24	0.26	0.25	0.23	0.29
Calcium	mg/L	NA	130	100	91	5	59	11	90	36
Chloride	mg/L	NA	140	83	120	4.7	28	10	38	38
Fluoride	mg/L	4	0.28	0.27	0.22	0.55	0.35	0.26	0.43	0.18
рН	SU	NA	5.30	4.37	5.97	6.43	6.60	6.51	6.64	5.82
Sulfate	mg/L	NA	160	540	820	150	920	1400	620	2400
Total Dissolved Solids	mg/L	NA	500	800	1700	590	1500	1800	1100	2900
				Append	lix IV					
Antimony	mg/L	0.006	<0.002 J							
Arsenic	mg/L	0.01	0.0013	0.027	0.01	0.0043	0.01	0.007	0.0037	0.0082
Barium	mg/L	2	0.021	0.01	0.025	0.045	0.037	0.041	0.04	0.021
Beryllium	mg/L	0.004	<0.001	<0.001 J	<0.001 J	<0.001	<0.001	<0.001	<0.001	<0.001
Cadmium	mg/L	0.005	0.0011	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Chromium	mg/L	0.1	<0.002 J	<0.002 J	0.0025	<0.002 J				
Cobalt	mg/L	NA	0.0072	0.0073	0.0071	<0.0005J	0.00081	0.0035	<0.0005J	0.0037
Lead	mg/L	0.015	<0.001 J	<0.001 J	<0.001 J	<0.001 J	<0.001	<0.001	<0.001 J	<0.001 J
Lithium	mg/L	NA	<0.05 J	0.15	<0.05 J	0.074	0.16	0.31	0.12	0.22
Mercury	mg/L	0.002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Molybdenum	mg/L	NA	<0.005	<0.005	<0.005	<0.005	<0.005 J	0.0052	<0.005	<0.005
Selenium	mg/L	0.05	<0.005	<0.005	<0.005 J	<0.005	<0.005 J	<0.005 J	<0.005	<0.005
Thallium	mg/L	0.002	<0.001 J	<0.001	<0.001	<0.001	<0.001 J	<0.001 J	<0.001	<0.001
Combined Radium	pCi/L	5	<0.355	<0.427 J	<0.386 J	<0.402 J	<0.377 J	<0.357 J	<0.334 J	<0.333 J

<x = Less than reporting limit (nondetectable)</pre>

J = Trace value seen above minimum detection limit but below reporting limit (trace)

4th Baseline Event – August 2016 Sampling Event

Constituent	Units	MCL	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6	MW-6A	MW-7
				Append	dix III					
Boron	mg/L	NA	0.19	0.057	0.067	0.27	0.27	0.29	0.27	0.22
Calcium	mg/L	NA	38	79	110	74	180	220	130	430
Chloride	mg/L	NA	120	77	35	6	35	12	65	49
Fluoride	mg/L	4	0.25	0.15	0.3	0.26	0.31	0.23	0.37	0.22
рН	SU	NA	6.04	5.73	7	7.17	7.04	6.88	7.14	6.29
Sulfate	mg/L	NA	<0.005 J	<0.005	<0.005 J	<0.005 J				
Total Dissolved Solids	mg/L	NA	460	850	730	540	1500	1800	1100	2900
				Append	lix IV					
Antimony	mg/L	0.006	<0.002 J							
Arsenic	mg/L	0.01	<0.001 J	0.013	<0.001 J	<0.001 J	0.001	<0.001 J	<0.001 J	<0.001 J
Barium	mg/L	2	0.023	<0.01 J	0.012	0.035	0.031	0.014	0.037	<0.01 J
Beryllium	mg/L	0.004	<0.001	<0.001 J	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Cadmium	mg/L	0.005	<0.001 J	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Chromium	mg/L	0.1	<0.002	<0.002	<0.002 J	<0.002	<0.002	<0.002	<0.002	<0.002
Cobalt	mg/L	NA	0.0052	0.0088	0.0038	<0.0005J	0.00075	<0.0005J	<0.0005J	0.015
Lead	mg/L	0.015	<0.001 J	<0.001 J	<0.001 J	<0.001 J	<0.001	<0.001	<0.001 J	<0.001
Lithium	mg/L	NA	<0.05 J	0.16	<0.05 J	0.078	0.16	0.22	0.11	0.34
Mercury	mg/L	0.002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Molybdenum	mg/L	NA	<0.005	<0.005	<0.005	<0.005	<0.005 J	<0.005	0.0067	<0.005
Selenium	mg/L	0.05	<0.005 J	<0.005	<0.005 J	<0.005 J				
Thallium	mg/L	0.002	<0.001 J	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Combined Radium	pCi/L	5	<0.424 J	<0.465 J	<0.833	<0.441 J	<0.435 J	<0.45 J	<0.484 J	<0.418 J

<x = Less than reporting limit (nondetectable)</pre>

J = Trace value seen above minimum detection limit but below reporting limit (trace)

5th Baseline Event – October 2016 Sampling Event

Constituent	Units	MCL	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6	MW-6A	MW-7
				Append	dix III					
Boron	mg/L	NA	0.2	0.053	0.047	0.24	0.33	0.34	0.31	0.26
Calcium	mg/L	NA	43	91	100	94	220	260	130	490
Chloride	mg/L	NA	130	65	74	6	29	13	65	56
Fluoride	mg/L	4	0.28	0.18	0.28	0.31	0.39	0.25	0.41	0.28
рН	SU	NA	6.59	5.95	7.21	7.51	8.00	6.98	7.85	6.75
Sulfate	mg/L	NA	99	470	120	120	1100	1100	570	1400
Total Dissolved Solids	mg/L	NA	460	850	580	570	1500	1700	1100	2800
				Append	lix IV					
Antimony	mg/L	0.006	<0.002	<0.002	<0.002 J	<0.002	<0.002	<0.002	<0.002 J	<0.002
Arsenic	mg/L	0.01	<0.001	0.014	<0.001 J	<0.001 J	<0.001 J	<0.001	<0.001 J	<0.001 J
Barium	mg/L	2	0.028	<0.01 J	0.02	0.03	0.033	0.013	0.037	<0.01 J
Beryllium	mg/L	0.004	<0.001	<0.001 J	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Cadmium	mg/L	0.005	<0.001 J	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Chromium	mg/L	0.1	<0.002	<0.002	<0.002 J	<0.002	<0.002	<0.002	<0.002	<0.002
Cobalt	mg/L	NA	0.0051	0.0095	0.0013	0.00073	0.0072	<0.0005J	<0.0005J	0.014
Lead	mg/L	0.015	<0.001 J	<0.001	<0.001 J	<0.001 J	<0.001	<0.001	<0.001	<0.001
Lithium	mg/L	NA	<0.05 J	0.17	<0.05	0.078	0.17	0.24	0.12	0.32
Mercury	mg/L	0.002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Molybdenum	mg/L	NA	<0.005	<0.005	<0.005	<0.005	<0.005 J	0.0066	<0.005	<0.005
Selenium	mg/L	0.05	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005J	<0.005
Thallium	mg/L	0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Combined Radium	pCi/L	5	<0.436J	<0.478J	<0.535J	<0.503J	<0.498J	<0.464J	<0.453J	<0.424J

<x = Less than reporting limit (nondetectable)</pre>

J = Trace value seen above minimum detection limit but below reporting limit (trace)

6th Baseline Event – March 2017 Sampling Event

Constituent	Units	MCL	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6	MW-6A	MW-7
				Append	dix III			l		
Boron	mg/L	NA	0.22	0.052	0.057	0.23	0.29	0.33	0.36	0.26
Calcium	mg/L	NA	38	93	250	86	200	260	170	500
Chloride	mg/L	NA	130	52	19	5.3	29	11	19	39
Fluoride	mg/L	4	0.21	0.12	<0.1 J	0.29	0.29	0.19	0.3	0.12
рН	SU	NA	6.07	5.84	6.67	7.32	7.38	7.15	7.21	6.40
Sulfate	mg/L	NA	130	540	630	150	1100	1000	720	1900
Total Dissolved Solids	mg/L	NA	500	940	1600	620	1700	1900	1400	3000
				Append	lix IV					
Antimony	mg/L	0.006	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Arsenic	mg/L	0.01	<0.001	0.037	0.0022	0.0013	0.0014	<0.001 J	0.0043	<0.001 J
Barium	mg/L	2	0.021	0.011	0.021	0.033	0.026	0.015	0.027	<0.01 J
Beryllium	mg/L	0.004	<0.001 J	0.0012	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001 J
Cadmium	mg/L	0.005	0.0012	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Chromium	mg/L	0.1	<0.002 J							
Cobalt	mg/L	NA	0.0071	0.0097	0.0096	<0.0005J	0.0022	0.0024	0.0017	0.014
Lead	mg/L	0.015	<0.001	<0.001	<0.001 J	<0.001 J	<0.001	<0.001	<0.001	<0.001
Lithium	mg/L	NA	<0.05 J	0.17	0.072	0.076	0.16	0.23	0.14	0.32
Mercury	mg/L	0.002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Molybdenum	mg/L	NA	<0.005 J	<0.005 J	<0.005	<0.005	<0.005 J	<0.005	<0.005 J	<0.005
Selenium	mg/L	0.05	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Thallium	mg/L	0.002	<0.001 J	<0.001 J	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Combined Radium	pCi/L	5	0.575	1.63	0.287	1.50	0.803	2.68	1.73	1.62

<x = Less than reporting limit (nondetectable)</pre>

J = Trace value seen above minimum detection limit but below reporting limit (trace)

7th Baseline Event – June 2017 Sampling Event

Constituent	Units	MCL	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6	MW-6A	MW-7
				Append	dix III					
Boron	mg/L	NA	<0.08J	<0.08J	0.034	0.27	0.31	0.37	0.36	0.26
Calcium	mg/L	NA	42	100	300	89	200	260	160	470
Chloride	mg/L	NA	130	54	110	5.4	23	12	26	48
Fluoride	mg/L	4	0.43	0.19	0.18	0.35	0.42	0.3	0.42	0.21
рН	SU	NA	6.35	5.78	6.62	7.22	7.04	6.93	7.09	6.41
Sulfate	mg/L	NA	78	650	1400	180	940	1300	780	2400
Total Dissolved Solids	mg/L	NA	450	950	2000	610	1600	1800	1400	2900
				Append	lix IV					
Antimony	mg/L	0.006	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Arsenic	mg/L	0.01	<0.001J	0.1	0.0032	<0.001J	0.0037	<0.001	0.0018	<0.001
Barium	mg/L	2	0.03	0.016	0.048	0.04	0.026	0.017	0.025	<0.01J
Beryllium	mg/L	0.004	<0.001	0.0031	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Cadmium	mg/L	0.005	<0.001J	<0.001	<0.001J	<0.001	<0.001	<0.001	<0.001	<0.001
Chromium	mg/L	0.1	<0.002	<0.002	<0.002J	<0.002	<0.002	<0.002	<0.002	<0.002
Cobalt	mg/L	NA	0.004	0.0088	0.0042	<0.0005J	0.0045	0.00087	0.0059	0.0015
Lead	mg/L	0.015	0.0033	0.001	0.0074	<0.001	<0.001	<0.001	<0.001	<0.001
Lithium	mg/L	NA	<0.05J	0.18	0.053	0.085	0.18	0.25	0.15	0.34
Mercury	mg/L	0.002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Molybdenum	mg/L	NA	<0.005	<0.005J	<0.005	<0.005	<0.005J	<0.005	<0.005J	<0.005
Selenium	mg/L	0.05	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Thallium	mg/L	0.002	<0.001	<0.001	<0.001J	<0.001	<0.001	<0.001	<0.001	<0.001
Combined Radium	pCi/L	5	<0.397J	<0.337J	<0.403	<0.291J	<0.343J	<0.414J	<0.33J	<0.314J

<x = Less than reporting limit (nondetectable)</pre>

J = Trace value seen above minimum detection limit but below reporting limit (trace)

8th Baseline Event – August 2017 Sampling Event

Constituent	Units	MCL	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6	MW-6A	MW-7
			1	Append	dix III			l		
Boron	mg/L	NA	0.16	<0.08J	<0.08J	0.28	0.33	0.34	0.38	0.27
Calcium	mg/L	NA	43	98	83	57	220	250	180	510
Chloride	mg/L	NA	130	45	8.1	5.3	23	12	26	38
Fluoride	mg/L	4	0.26	0.17	0.32	0.27	0.45	0.25	0.4	0.22
рН	SU	NA	6.2	5.7	6.7	7.3	7.0	7.2	7.1	6.3
Sulfate	mg/L	NA	82	550	63	140	920	1100	730	2200
Total Dissolved Solids	mg/L	NA	450	960	450	530	1600	1800	1400	2900
Appendix IV										
Antimony	mg/L	0.006	<0.002J	<0.002J	<0.002J	<0.002J	<0.002J	<0.002J	<0.002J	<0.002
Arsenic	mg/L	0.01	<0.001J	0.013	<0.001J	0.002	<0.001J	<0.001J	<0.001J	<0.001J
Barium	mg/L	2	0.024	0.01	0.018	0.027	0.023	0.018	0.021	<0.01J
Beryllium	mg/L	0.004	<0.001	<0.001J	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001J
Cadmium	mg/L	0.005	<0.001J	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Chromium	mg/L	0.1	<0.002J	<0.002	0.0026	<0.002	<0.002	<0.002	<0.002	<0.002
Cobalt	mg/L	NA	0.0036	0.01	0.00067	<0.0005J	0.0023	<0.0005J	0.0051	0.014
Lead	mg/L	0.015	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Lithium	mg/L	NA	<0.05J	0.17	<0.05J	0.073	0.18	0.22	0.15	0.32
Mercury	mg/L	0.002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Molybdenum	mg/L	NA	<0.005	<0.005J	<0.005	<0.005J	<0.005J	<0.005J	<0.005J	<0.005
Selenium	mg/L	0.05	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Thallium	mg/L	0.002	<0.001J	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Combined Radium	pCi/L	5	<0.42J	<0.417J	<0.473	<0.476J	<0.383J	<0.389J	<0.291J	<0.346J

<x = Less than reporting limit (nondetectable)</pre>

J = Trace value seen above minimum detection limit but below reporting limit (trace)

MW-5AR Baseline Events

Constituent	Units	MCL	1st	2nd	3rd	4th	5th	6th	7th	8th
			May 2023	Nov 2023	May 2024	Nov 2024	May 2025	Nov 2025	May 2026	Nov 2026
			T	Append	dix III		I	I		
Boron	mg/L	NA	0.370	0.400						
Calcium	mg/L	NA	77	120						
Chloride	mg/L	NA	77	28						
Fluoride	mg/L	4	0.51	<1J						
рН	SU	NA	7.46	7.31						
Sulfate	mg/L	NA	190	370						
Total Dissolved Solids	mg/L	NA	650	920						
				Append	lix IV					
Antimony	mg/L	0.006	<0.002	<0.0025						
Arsenic	mg/L	0.01	0.0019	<0.0013						
Barium	mg/L	2	0.046	0.028						
Beryllium	mg/L	0.004	<0.001	<0.0025						
Cadmium	mg/L	0.005	<0.001	<0.0025						
Chromium	mg/L	0.1	<0.002	<0.0025						
Cobalt	mg/L	NA	0.0013	<0.0025						
Lead	mg/L	0.015	<0.001	<0.0013						
Lithium	mg/L	NA	0.1	0.12						
Mercury	mg/L	0.002	<0.0002	<0.0002						
Molybdenum	mg/L	NA	<0.005J	<0.015J						
Selenium	mg/L	0.05	<0.005	<0.0013						
Thallium	mg/L	0.002	<0.001	<0.0005						
Combined Radium	pCi/L	5	1.98J	1.94J						

<x = Less than reporting limit (nondetectable)</pre>

J = Trace value seen above minimum detection limit but below reporting limit (trace)

APPENDIX 3

Monitoring Well Field Inspection Sheets and Field Notes

Purge Rate Volume Temp. pH (SU) (ms/cm) (mg/L) (MV) () Odd (MV) (MV) () Odd (MV) (M							-				
Purge Information: Method of Well Purge: Peristaltic Pump with 3/8 - Inch Diameter Tubing Actual Purge Volume Removed:	Facility:	Asbury	CCR (Perr	nit#)		lonitoring V	Well ID: M	N- X		
Purge Information: Method of Well Purge: Peristaltic Pump with 3/8 - Inch Dlameter Tubing Mactual Purge Volume Removed: mL post pump calibration.		(,					_			Field B	lank .
Date Time Initiated: 11 AB -23 Date Time Completed: 11 AB -23 Date	Purge In	formation:					•	/ ₹			
Date / Time Initiated: 11	Method	of Well Purge	e: Perista	ltic Pump wit	h 3/8 - inch	Diameter '	Tubing '				
Date / Time Initiated: 11 AB -23 Bate / Time Completed: 11 AB -23 Bate / Time Conduction (Completed: 12 AB -23 Bate / Time Conduction (Completed: 12 AB -23 Bate / Time Conduction (Completed: 12 AB -23 Bate / Time Completed: 12 AB -23 Bate / Tim											
Purge Data: Purge Rate			Actu	al Purge Volur	ne Remove	d:	mL po	st pump calil	bration .		
Purge Rate Purge Rate Volume Temp. pH Conductivity	Date / Ti	me Initiated:	11 9	8 -23 @		Date	/ Time Com	npleted: 11	- 08	-23	
Purge Rate Volume Temp. pH (Sp) (ms/cm) (mg/L) (my/min) (ml.) (*c) (Su) (ms/cm) (mg/L) (MV) () Odd (Coldrift (mg/L) (mg/L) (MV) () Odd (Coldrift (mg/L) (mg/L) (MV) () Odd (Coldrift (mg/L) (MV) () Odd (MV) Odd (MV) () Odd (MV)	Well Pur	ged To Dryne	ess?: Y /	N	Ga	s Detected	? Y / N				
Purge Rate Volume Temp. pH (Su) (ms/cm) (mg/L) (MV) () Odd (Coldrift) (mg/L) (MV) () Odd (Coldrift) (mg/L) (MV) () Odd (Coldrift) (mg/L) (mg/L) (MV) () Odd (Coldrift) (mg/L) (MV) () Odd (Coldrift) (mg/L) (MV) () Odd (MV) Odd (MV	Purge Da	ata:									
Time (mL/min) (mL) (°C) (SU) (mS/cm) (mg/L) (MV) () Odd		Purge			np. nH					Turbio	Other (Color
19	Time	(mL/min)	(mL			1			1	1,	Odor
	ii sudi	200						_		211	
15.6 5.76 0.625 3.57 76. Q 3.77 77.5 7.84 77.5						tower of					
Field Inspection Good Fair Poor				15,	5 5.6	9 -0,	620	4.68	75.0	4.0	9
Field Inspection Access G F P Casing Condition G G F P Casing Condition G G F P Riser Condition G F P Riser Condition G F P Riser Condition G F F P Riser Condition N N N N N N N N N Measuring Point N N N N Maintenance Performed D D Contamination Normal F C Redevelopment Normal F C Redevelopment Needed N N N N A Redevelopment Needed N N N A Redevelopment Thickness Checked N N N A Redevelopment Thickness Checked N N N A Redevelopment Needed N N N A Redevelopment Thickness Checked N N N A Redevelopment Needed N N N N A Redevelopment Calibration Normal N N N N A Redevelopment N N N N A Redevelop	146			19,0	5 5.7	6 0	625	3,53	76.0	3.3	12
Field Inspection Good Fair Poor	:20	V		15.	5.7	6 0.	628	3,45	77,5	7.8	4
Time sampled		35									
Time sampled Pad Condition Casing Condition G F P Weather Conditions 7 Unity 45 F P Weather Conditions 9 Riser Condition 6 F P Field Inspection 4 September 1 N N/A Water Level Start 8 No Measuring Point 1 N N/A Water Level Finish 6 7 S Near Measuring Point 1 N N/A Water Level Finish 9 N N/A Water Level Finish 9 N N/A Water Level Finish 9 N N/A Name (MEC Field Sampler): Ryan Ortbals and Rick Elgin 1 Equipment Calibration Normal 1 N N/A Redevelopment Needed 1 N N/A Redevelopment Needed 1 N N/A Any deviations from SAP Y N N/A Sampler Signature 9 N N/A Wistorical Data: Average of sampling events. Note: MW-5-AR first sampled May 2023 Constituent 1 Units 1 MW-1 1 MW-2 MW-3 MW-4 MW-5 MW-5-AR Specific Conductance 1 Units 1 MW-1 MW-2 MW-3 NW-4 MW-5 MW-5-AR Specific Conductance 1 Units 1 MW-1 MW-2 MW-3 NW-4 MW-5 MW-5-AR Total Well Depth 6 Level 1 Nonly 1.24 0.4 5.39 1.32 6.92							Field Inspec	ction	Good	<u>Fair</u>	Poor
Weather Conditions 74414 456			1112	20						1	P
Weather Conditions 14 11 12 15 15 15 15 15 15 15 15 15 15 15 15 15	Time san	npled	1.0	0			Pad Conditi	ion	G	F	P
Riser Condition Field Inspection Well ID Visible N N/A Water Level Start Clear of Weeds N N/A Water Level Finish Maintenance Performed Decontamination Normal Figure Today Riser Condition Field Inspection Well ID Visible N N/A Standing Water Clear of Weeds N N/A Measuring Point N N/A Split sample with MDNR N N/A Maintenance Performed Pecontamination Normal N N/A Redevelopment Needed Any deviations from SAP N N/A Sediment Thickness Checked N N/A Historical Data: Average of sampling events. Note: MW-5-AR first sampled May 2023 Constituent Units MW-1 MW-2 MW-3 MW-4 MW-5 MW-5 MW-5-AR Specific Conductance Umhos/cm GW 0.786 1.132 2.083 0.841 1.769 Total Well Depth ft Level Average GW Depth ft Only 1.24 0.4 5.39 1.32 6.92							Casing Cond	dition	G	F	P
Water Level Start			6	/-	MOE		Locking Cap	& Lock	G	F	P
Water Level Start	Weather	Conditions_	14111	4,	2º1		Riser Condi	tion	G/	F	Р
Water Level Finish Clear of Weeds Measuring Point W N N/A							Field Inspec	ction	Yes	N.	o N/A
Water Level Finish Clear of Weeds Measuring Point N N/A Split sample with MDNR Maintenance Performed Performed N N/A Decontamination Normal N N/A Redevelopment Needed N N/A Redevelopment Needed N N/A Sampler Signature With MDNR N N/A Redevelopment Normal N N/A Sediment Thickness Checked N N/A With Mistorical Data: Average of sampling events. Note: MW-5-AR first sampled May 2023 Constituent Units MW-1 MW-2 MW-3 MW-4 MW-5 MW-5A MW-5-AR PH S.U. NO TEST S.83 S.08 6.30 6.83 6.82 Specific Conductance umhos/cm GW 0.786 1.132 2.083 0.841 1.769 Total Well Depth ft Level Average GW Depth ft Only 1.24 0.4 5.39 1.32 6.92			12	2		,	Well ID Visil	ble	X) N	N/A
Water Level Finish Clear of Weeds Measuring Point N N/A Split sample with MDNR Maintenance Performed Performed N N/A Decontamination Normal N N/A Redevelopment Needed N N/A Redevelopment Needed N N/A Sampler Signature With MDNR N N/A Redevelopment Normal N N/A Sediment Thickness Checked N N/A With Mistorical Data: Average of sampling events. Note: MW-5-AR first sampled May 2023 Constituent Units MW-1 MW-2 MW-3 MW-4 MW-5 MW-5A MW-5-AR PH S.U. NO TEST S.83 S.08 6.30 6.83 6.82 Specific Conductance umhos/cm GW 0.786 1.132 2.083 0.841 1.769 Total Well Depth ft Level Average GW Depth ft Only 1.24 0.4 5.39 1.32 6.92	Water Le	vel Start	4.7	/			Standing W	ater	Y	, A	N/A
Water Level Finish Split sample with MDNR Y N N/A Maintenance Performed Y N N/A Decontamination Normal N N/A Redevelopment Calibration Normal N N/A Redevelopment Needed Y N N/A Any deviations from SAP Y N N/A Sampler Signature Units MW-5-AR first sampled May 2023 Constituent Units MW-1 MW-2 MW-3 MW-4 MW-5 MW-5-AR pH S.U. NO TEST 5.83 5.08 6.30 6.83 6.82 Specific Conductance umhos/cm GW 0.786 1.132 2.083 0.841 1.769 Total Well Depth ft Level Average GW Depth ft Only 1.24 0.4 5.39 1.32 6.92							Clear of We	eds	(X)) Y	N/A
Water Level Finish Split sample with MDNR Y N/A Maintenance Performed Y N N/A Decontamination Normal N N/A Name (MEC Field Sampler): Ryan Ortbals and Rick Elgin Equipment Calibration Normal N N/A Redevelopment Needed Y N N/A Any deviations from SAP Y N N/A Sediment Thickness Checked Y N N/A Historical Data: Average of sampling events. Note: MW-5-AR first sampled May 2023 Constituent Units MW-1 MW-2 MW-3 MW-4 MW-5 MW-5-AR pH S.U. NO TEST 5.83 5.08 6.30 6.83 6.82 Specific Conductance umhos/cm GW 0.786 1.132 2.083 0.841 1.769 Total Well Depth ft Level Average GW Depth ft Only 1.24 0.4 5.39 1.32 6.92			6	25'			Measuring I	Point	Y,	Ŋ	l N/A
Name (MEC Field Sampler): Ryan Ortbals and Rick Elgin Equipment Calibration Normal Redevelopment Needed Any deviations from SAP Sediment Thickness Checked W-5-AR first sampled May 2023 Constituent Units MW-1 MW-2 MW-3 MW-4 MW-5 MW-5-AR PH S.U. NO TEST S.83 Specific Conductance umhos/cm GW 0.786 1.132 2.083 0.841 1.769 Total Well Depth ft Level Average GW Depth ft Only 1.24 0.4 5.39 1.32 6.92	Water Le	vel Finish	0,	13			Split sample	e with MDNR	Y		N/A
Name (MEC Field Sampler): Ryan Ortbals and Rick Elgin Redevelopment Needed Any deviations from SAP Sediment Thickness Checked Whistorical Data: Average of sampling events. Note: MW-5-AR first sampled May 2023 Constituent Units MW-1 MW-2 MW-3 MW-4 MW-5 MW-5A MW-5A MW-5A MW-5A MW-5A Specific Conductance umhos/cm GW 0.786 1.132 2.083 0.841 1.769 Total Well Depth ft Only 1.24 0.4 5.39 1.32 6.92							Maintenand	e Performed	I Y		N/A
Redevelopment Needed Y									· · · · · · · · · · · · · · · · · · ·	\ \ \	N N/A
Any deviations from SAP Y N N/A Sediment Thickness Checked Y N N/A Historical Data: Average of sampling events. Note: MW-5-AR first sampled May 2023 Constituent Units MW-1 MW-2 MW-3 MW-4 MW-5 MW-5AR pH S.U. NO TEST 5.83 5.08 6.30 6.83 6.82 Specific Conductance umhos/cm GW 0.786 1.132 2.083 0.841 1.769 Total Well Depth ft Level Average GW Depth ft Only 1.24 0.4 5.39 1.32 6.92	Name (M	IEC Field Sam	pler): <u>Rya</u> ı	n Ortbals and	Rick Elgin		quipment	Calibration N	Iormal 🕎	N	N/A
Sediment Thickness Checked Y N N/A			h	111	1		Redevelopn	nent Needed	Υ	K	N/A
Historical Data: Average of sampling events. Note: MW-5-AR first sampled May 2023 Constituent Units MW-1 MW-2 MW-3 MW-4 MW-5 MW-5A MW-5-AR pH S.U. NO TEST 5.83 5.08 6.30 6.83 6.82 Specific Conductance umhos/cm GW 0.786 1.132 2.083 0.841 1.769 Total Well Depth ft Level Level		Ü	//_	Mes	7					∥ N	N/A
Constituent Units MW-1 MW-2 MW-3 MW-4 MW-5 MW-5A MW-5-AR pH S.U. NO TEST 5.83 5.08 6.30 6.83 6.82 Specific Conductance umhos/cm GW 0.786 1.132 2.083 0.841 1.769 Total Well Depth ft Level Level	Sampler S	Signature	Myse	- Comment	/		Sediment Th	hickness Che	cked Y	N	N/A
Constituent Units MW-1 MW-2 MW-3 MW-4 MW-5 MW-5A MW-5-AR pH S.U. NO TEST 5.83 5.08 6.30 6.83 6.82 Specific Conductance umhos/cm GW 0.786 1.132 2.083 0.841 1.769 Total Well Depth ft Level Level	Historical	l Data: Avera	ge of sami	oling events. N	lote: MW-5	-AR first sa	mpled May	2023			
pH S.U. NO TEST 5.83 5.08 6.30 6.83 6.82 Specific Conductance umhos/cm GW 0.786 1.132 2.083 0.841 1.769 Total Well Depth ft Level Level 5.39 1.32 6.92 Average GW Depth ft Only 1.24 0.4 5.39 1.32 6.92						17	111		MW-5	MW-5A	MW-5-AR
Specific Conductance umhos/cm GW 0.786 1.132 2.083 0.841 1.769 Total Well Depth ft Level	рН					-					
Total Well Depth ft Level Average GW Depth ft Only 1.24 0.4 5.39 1.32 6.92		Conductance									
Average GW Depth ft Only 1.24 0.4 5.39 1.32 6.92										200	
						1.24	0.4	5,39	1.32	6.92	
				ft				1.00			

DON'T

SAMPLE

 mL

800

800

800

800

800

800-206-2300

2 System Volumes

(Min Purged Amount)

Facility:	Asbury (CCR (Perm	it #)	. M		Well ID: M\			
_	formation: of Well Purge	: Peristal	tic Pump wit	h 3/8 - inch [Diameter 1		Blind	Duplicate [Field Bl	ank
		Actua	l Purge Volur	ne Removed	:	mL po	st pump calil	oration .		
Date / Ti	me Initiated:	11-24	7 -23 @		Date	/ Time Com	pleted: 11		-23	
Well Pur	ged To Dryne	ss?: Y /	N	Gas	Detected	? Y / N	7			
Purge Da	ıta:									
Time	Purge Rate (mL/min)	Cumula Volun (mL			Cond	ecific luctivity S/cm)	Dissolved Oxygen (mg/L)	ORP (MV)	Turbic	Other (Color, lity Clarity,) Odor)
11:33	200		14,	2 6.5	2 1/1	33	3.54	-69.1	33.6	3 clear
:35			ju,	3 612	1	130	2.17	- 52.3	8.8	4 /
:37				3 5.8		130	1,57	-36.E	0.00	1
139			14.			134	1.25	-20.		
Time san	npled	1/	1:40			Field Inspe Access Pad Conditi Casing Cond	ion dition	Good G G	F F F	Poor P P
Weather	Conditions	Sun	my L	100F		Locking Cap Riser Condi	tion	G	F F	P P
Water Le	vel Start	2.	11/37 01 0	7'		Field Inspect Well ID Visi Standing W Clear of We Measuring	ble /ater eeds	Y		N/A N/A N/A
Water Le	vel Finish	2	, 10			Split sample	e with MDNR ce Performed		(A)	
	IEC Field Sam	1		Rick Elgin		Equipment Redevelopr	nation Norm. Calibration Needecons from SAI	lormal (Y I Y		N/A N/A
Sampler S	Signature	Myn.	160			Sediment T	hickness Che	cked Y	N	N/A
	l Data: Avera	ge of samp		1 7						
Constitu	ent		Units	MW-1	MW-2	MW-3		MW-5	MW-5A	MW-5-AR
pH	Canduatana	-	S.U.	NO TEST	5.83	5.08	6.30	6.83	6.82	
	Conductance		umhos/cm	GW	0.786	1.132	2.083	0.841	1.769	
	ell Depth		ft	Level	1 24	- 0.4	F 20	1 22	6.02	
	GW Depth		ft ft	Only	1.24	0.4	5,39	1.32	6.92	
	GW Drop 1 Volumes		π	DON'T		800	800	800	800	
	ged Amount)		mL	SAMPLE	800	000	300	500	500	

Facility:	Asbury C	CR (Permit #)	Monitoring	Well ID: MV	N- 4	Field Blank	
_	formation:					Dillia i	Duplicate	rield blatik	·
Method	of Well Purge:	Peristaltic Pum	p with 3/8	- inch Diam	eter Tubing				
		Actual Purge	Volume Re	moved:	mL p	ost numn calik	aration		
		11-28-27	volume ite	moved		ost purip call	11-28-2	3	
Date / Ti	me Initiated:	11-28-27 X2:	3 @		Date / Time Co	mpleted: -5-	-223		
		s?: Y/N		Gas Dete	ected? Y / N				
Purge Da	ita:			Ť		1	T	1	1
Time	Purge Rate (mL/min)	Cumulative Volume (ml)	Temp. (°C)	pH (UZ)	Specific Conductivity (mS/cm)	Dissolved Oxygen (mg/L)	ORP (MV)	Turbidity	Other (Color, Clarity, Odor)
1:56	200		15.9	6.61	1.715	1.65	31.5	15.11	Neap
0:538			16.(6.63	1,719	1.10	18.6	15,32	
2:00			16.0	6.64	1,721	0.86	7,0	16,93	
102			6.1	6.65	1.721	0.73	0,3	17.03	
	8							<u> </u>	
					Field Insp	ection	Good	<u>Fair</u> <u>F</u>	Poor
		0:05			Access		G	F	P
Time sam	npled	2:05			Pad Condi		(6)	F	P
					Casing Co		/ G /	F	P
		6	LEGE		Locking Ca	-	G /	F	P
Weather	Conditions	MANY,	47		Riser Cond		G	F	Р
		9.371			Field Insp		Yes	<u>No</u>	N/A
Makaula	and Chart	937			Well ID Vi		(Y)	N	N/A
water Le	vei Start	(c / /			Standing \		Y	N	N/A
			1		Clear of W			N	N/A
Waterle	vel Finish	14.48	•		Measuring	g Point le with MDNR		N	N/A
water Le	vei i iiiisii	10				nce Performed	•		N/A N/A
						ination Norma	1.	N	N/A N/A
Name (M	EC Field Samp	ler): Ryan Ortbals	and Rick F	lein		t Calibration N	50	N	N/A
(/		7		ment Needed		K	N/A
			//	1		tions from SAP		/N /	N/A
Sampler S	Signature <u></u>	1200		//	-	Thickness Ched		N	N/A
444-4-1		1							
	Data: Average	e of sampling eve		BANAL CA	2004.7			11 12	
onstituent -		Units S.U.	MW- 6	MW- 64					
ecific Cond	uctance	umhos/cm	6.72 1.900	6.87 1.601	6.12 2.699				
otal Well De		ft	1.500	1.001	2.099				
verage GW I		ft	7.86	7.28	3.04				1
verage GW I		ft	7.00	7.20	3.04				
System Volu									
Ain Purged A		mL	800	800	800				

Facility:	Asbury C	CR (Permit #		1		Well ID: IVIV	uplicate	Field Blank	<u> </u>
	ormation:	Peristaltic Pum	n with 2/0	- inch Diam			X		<u> </u>
iviethod t	or wen rurge.		•		mL po	et suma calib	ration		
		1(-24-2	yolume kei	moveu:	THE PO	ist pullip callb	ration.		
Date / Tir	me Initiated:	52	23√ @		Date / Time Con	npleted: <u>5 –</u>	-223		
Well Purg	ged To Drynes	ss?: Y / N		Gas Det	ected? Y / N				
Purge Da	ta:								
Time	Purge Rate (mL/min)	Cumulative Volume (ml)	Temp. (°C)	pH (SU)	Specific Conductivity (mS/cm)	Dissolved Oxygen (mg/L)	ORP (MV)	Turbidity	Other (Color, Clarity, Odor)
10:43	200		145	742	0.897	9.43	-1,1	7.85	Wag
0 :44	٨		14,3	7,07	0,789	1.87	3.6	5.70	
:46			14.5	7,19	0,887	1.57	5.3	6,20	
:49	1		14,5	7.16	6.886	300 1.0	1 2.7	6.81	V
Weather Water Le	conditions vel Start vel Finish	Gunny 1	7/11: 40°}	Duplicate 05/11	Pad Condit Casing Con Locking Ca Riser Cond Field Inspe Well ID Vis Standing W Clear of W Measuring Split sample	dition p & Lock ition ection ible Vater eeds Point le with MDNR		F F F No N N N N N N N N N N N N N N N N N N	P P P P N/A N/A N/A N/A N/A N/A N/A
Name (MEC Field Sampler): Ryan Ortbals and Rick Elgin Sampler Signature Maintenance Performed Y Decontamination Normal Full Property of the									N/A N/A N/A
	I Data: Avera	ge of sampling ev	vents MW- 6	MW- 6	A MW-7				
nstituent		S.U.	6.72	6.87	6.12				
ecific Cond	luctance	umhos/cn		1.601					
tal Well De		ft	1.500	2.001					
erage GW		ft	7.86	7.28	3.04				
erage GW		ft							
ystem Vol		ml	800	800	800				
in Durgod	1	mL mL	800	000	800				

Facility:	Facility: Asbury CCR (Permit #) Monitoring Well JD: MW- 5A Sample X Blind Duplicate Field Blank										
-	formation: of Well Purge	: Peristal	tic Pump	with 3/8	B - inch [Diameter T	/	Billia	оприсате [_	_ FIGIŒ BI	апк
		Actua	ıl Purge Vo	olume R	emoved	:	mL pos	st pump calib	oration .		
Date / Ti	me Initiated:	11 - 26	1 -23	@		Date /	Time Com	pleted: <u>11</u> -		-23	
!! =											
Well Pur	ged To Dryne	ss?: Y /	N		Gas	Detected?	Y / N				
Purge Da	ıta:										
Time	Purge Rate (mL/min)	Cumula Volun (mL		Гетр. (°C)	pH (SU)	Cond	ecific uctivity 5/cm)	Dissolved Oxygen (mg/L)	ORP (MV)	Turbid	Other (Color, lity Clarity) Odor)
R:37	200		1.	5.7	6.78	3 34	-33	1.78	29.4	5.4	4 Clear
:39				5,7	6,6		419	liaa			
:41				3.8	6.6 0		406	0.76	31.1	7.4	1
				6.0			424	0.49	31.7		
:43			- 1	0.0	6,54	71	1014	W17	11. 7	9.0	74
Time sam	npled	9:4	5			F	Access Pad Condition	on	Good G G G	Fair F F F	<u>Poor</u> P P P
Weather	Conditions	Sunn	7, 3	5%		F	ocking Cap Riser Condit	& Lock tion	G G Yes	F F	P P o N/A
Water Le	vel Start	9.89	3'			s	Vell ID Visib tanding Wa Dear of We	ole ater	(X)		N/A N/A
Water Le	vel Finish	17.	57'			M S	/leasuring F plit sample		l Y	N N	
Name (M	EC Field Sam	pler): <u>Ryar</u>	o Ortbals a	and Rick	Elgin	E	quipment (nation Norma Calibration N nent Needed	Iormal 🕢		N/A N/A
Sampler S	Signature	Mps.		1			-	ons from SAP nickness Che		N	7
Historical	l Data: Avera	ge of samp	oling even	ts. Note	: MW-5-	AR first sar	npled May	2023			
Constitu	ent		Units	· N	/W- 1	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-5-AR
рН			S.U.		O TEST	5.83	5.08	6.30	6.83	6.82	
	Conductance		umhos/		GW	0.786	1.132	2.083	0.841	1.769	
	ell Depth		ft		Level						
	GW Depth		ft		Only	1.24	0.4	5.39	1.32	6.92	
	GW Drop		ft								
1 1	n Volumes ged Amount)		mL		ON'T	800	800	800	800	800	

				2023 FI	eid Sam	piing Lo	g		, /-			
Facility:	Asbury (CCR (Perm	it #)	Mo	onitoring W	g 'ell ID: MW Blind D	y- 3 /4	Field Blar	nk 🗀.		
-	formation : of Well Purge	: Peristal	tic Pump wit	h 3/8 - inch I								
		Actua	l Purge Volur	ne Removed	:	mL pos	t pump calib	ration .				
Date / Tir	me Initiated:	11-39	-23 @		Date /	Time Com	pleted: <u>11 -</u>		-23			
Well Purg	ged To Dryne	ss?: Y /	R)	Gas	Detected?	YIN	7					
Purge Da	ta:											
Time	Purge Rate (mL/min)	Cumula Volun (mL			Cond	ecific uctivity 6/cm)	Dissolved Oxygen (mg/L)	ORP (MV)	Turbidit (Other (Color, Y Clarity, Odor)		
10:07	200		15.1	7.67	7 /	362	6.34	-3,6	3.8.	2 Mean		
:001			14.5	3 7.40	2 1	244	5,88	47	4.0	2		
.ON			14,0			238	5.74	9,5	5.91	+		
:13			14	5 7.31	1,0	335	5.66	130	5,59			
	13 1 14,5 7,31 1,237 5,66 13,0 5,59 1											
Time sam	npled	a 18	0:15		P	ield Inspec Access Pad Condition	on	Good G G	Fair F F F	Poor P P P		
Weather	Conditions_	Sun	My, 75	OF	L	ocking Cap liser Condit	& Lock ion	G G	F F	P P N/A		
Water Le	vel Start	1	72'	2 (S	Vell ID Visib tanding Wa lear of We	ole ater	Yes	N N N	N/A		
Water Le	vel Finish	9,	63) ·	S	∕laintenanc	with MDNR e Performed	Υ	N N	N/A N/A N/A		
Name (M	IEC Field Sam	pler): <u>Ryar</u>	Ortbals and	Rick Elgin	E R	quipment (ledevelopm	cation Norma Calibration N	ormal (Y Y	N Z Z	N/A N/A N/A		
Sampler :	Signature	Myon	TH			•	ons from SAP nickness Che		N	N/A N/A		
Historica	l Data: Avera	ge of samp				T						
Constitu	ent		Units	MW-1	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-5-AR		
pH	Conductonso		S.U. umhos/cm	NO TEST GW	5.83 0.786	5.08 1.132	6.30 2.083	6.83 0.841	6.82 1.769			
	Conductance ell Depth		ft	Level	0.700	1.132	2.003	0.041	1.703			
	GW Depth		ft	Only	1.24	0.4	5.39	1.32	6.92			
	GW Drop		ft	J,			5.55					
2 System	n Volumes		mL	DON'T	800	800	800	800	800			
(Min Pur	rged Amount)		SAMPLE								

Facility:	Asbury Co	CR (Permit #)		Well ID: MW			_
	ormation:				Sample	Blind D	uplicate	Field Blank	
Method o	of Well Purge:	Peristaltic Pun	np with 3/8	3 - inch Dian	neter Tubing				
		Actual Purge	Volume Re	emoved:	mL po	st pump calib	ration.		
Date / Tir	ne Initiated:	The second secon	23 @		Date / Time Con	nnleted· 5 –	223		
Date / III	ne minateu.	471)		Date / Time con	npicteu.	225		
		s?: Y / N	, ,	Gas Det	ected? Y / N				
Purge Da	ta:			T T		r			
Time	Purge Rate (mL/min)	Cumulative Volume (ml)	Temp.	pH (SU)	Specific Conductivity (mS/cm)	Dissolved Oxygen (mg/L)	ORP (MV)	Turbidity	Other (Color, Clarity, Odor)
8:56	200		13.8	7.06	3,118	1.74	4.49	15.68	leas
0:58			140	6.83	2,104	0.70	12.6	6,63	
9:00			13.9	6.81	2,103	0.55	14,0	8,44	
202			14,0	679	9.0917	0.45	14.9	7.66	
Time sam	npled	9:05	_		Field Inspe Access Pad Condit Casing Con	ion	Good G G	F F	P P P P
Weather	Conditions	Sunny,	300F		Locking Ca _l Riser Cond	-	G	F F	P P
	vel Start	6. 20			Field Inspe Well ID Vis Standing W Clear of We	ible /ater	Yes	No N N	<u>N/A</u> N/A N/A N/A
Waterle	vel Finish	17.78	(Measuring		& Y	N N	N/A N/A
water Le	vei i iiii3ii	- 70				ce Performed	Ϋ́	W)	N/A
N / N A	FC F: -1-1 C	l- \	I 1 8'-1	FIZ.		nation Norma	la control	N	N/A
Name (M	IEC Field Samp	oler): <u>Ryan Ortba</u>	is and Rick	Elgin		: Calibration N ment Needed	ormai (Y	AN	N/A N/A
Sampler S	Signature <u></u>	yn to			Any deviati	ions from SAP Thickness Chec		(N)	N/A N/A
Historica	l Data: Averag	e of sampling ev	ents						
nstituent		Units	MW-	6 MW- 6	A MW-7				
1		S.U.	6.72	6.87	6.12				
ecific Cond	luctance	umhos/cm	1.900	1.601	2.699				
tal Well De	epth	ft							
erage GW		ft	7.86	7.28	3.04				
erage GW		ft							
System Vol Iin Purged		mL	800	800	800				

Facility:	Asbury C	CCR (Permit #)		Weil ID: MV		Field Blank	
_	formation: of Well Purge	: Peristaltic Pum	p with 3/8	- inch Dia		Dillia L	Aplicate	rield blattk	J•
					mL p				
Date / Ti	me Initiated:	11-28-23	23 @		Date / Time Co	mpleted: 5-	-223		
	ged To Drynes	ss?: Y/N			tected? Y / N	5)			
Time	Purge Rate (mL/min)	Cumulative Volume (ml)	Temp. (°C)	pH (SU)	Specific Conductivity (mS/cm)	Dissolved Oxygen (mg/L)	ORP (MV)	Turbidity	Other (Color, Clarity, Odor)
3:21	200		14.0	6.69	2,165	2.08	0.3	27.60	Claqu
0:23			14.8	6.51	2,166	1.16	0,9	34,15	
:25			14.9	6.38	9,173	0.69	04.3	36.13	
27			15.0	6.33	2,181	0,51	7,3	33.80	
Weather Water Le Water Le Name (M	Conditions vel Start vel Finish EC Field Samp	3:30 3:30 3:30 4,17 16.8 Deler): Ryan Ortbal ge of sampling eve	s and Rick		Maintenar Decontam Equipmen Redevelop Any deviat	tion ndition ap & Lock dition ection sible Water /eeds	ormal Y Y	Fair F F F F No ZZZ N N ZZZ N N N N N N N N N N N N N N	POOT P P P P N/A
nstituent		Units	MW- 6	MW-	MW-7				
1		S.U.	6.72	6.87					
ecific Cond		umhos/cm	1.900	1.603	2.699				
tal Well De	•	ft							
erage GW		ft	7.86	7.28	3.04				
erage GW		ft							
System Vol Iin Purged		mL	800	800	800				

MW-L 9.351

2023 Field Sampling Log

Facility:	Asbury (CCR (Perm	it#			_ M				7	
Duras Inf	iaumatian.						Sample	Blind I	Duplicate	_ Field Bla	ink
_		· Daristali	tic Dur	nn with :	3/8 - inch I	Diameter T	uhing				
Method	or went arge	. renstan	iic rui	iip with.	3/ 0 - IIICII I	Diameter 1	ubilig				
		Actua	l Purge	e Volume	Removed	:	mL pc	ost pump calib	oration .		
Date / Tir	me Initiated:	11 29	-23	@		Date,	Time Con	npleted: 11-		23	
Well Purg	ged To Dryne:	ss?: Y 1	N)		Gas	S Detected?	YN				
Purge Da	Purge Rate Volume Temp. pH Conductivity (ms/cm) (m										
Time	Rate	Volum				Cond	uctivity	Oxygen	1	Turbid	Other (Color, ity Clarity,) Odor)
2:40	200			150	2 /50	9 2	490	177-10 A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		27	86 (kar
	1				and the same of th	S					1/2
1	-										
	1/										7 /
10				1711	0110	4,	ie (401	1/1/	1148	2
							ield Inspe	ection	Good	Fair	Poor
		2		7					1/	10	P
Time sam	pled	1,0	10				ad Condit	tion	G	F	Р
						(Casing Con	dition	G	F	Р
		6		31.70	70	Į	ocking Ca	p & Lock	G	F	Р
Weather	Conditions_	1900	4	45			Riser Cond	ition	\ G/	F	Р
			//		1	1	ield Inspe	ection	Yes	No.	N/A
		6 11	-((Y)	N	
Water Lev	vel Start	0,17				7	_		Y		
									Y	1	N/A
Mataula	and Etastala	7	14	10			_		$\mathcal{C}_{\mathcal{C}}$	N	N/A
water Lev	vei Finish	- 1	10								
									N		_
Name (M	FC Field Sami	nler\: Rvan	Ortha	als and Ri	ck Elgin				(71/	7 N	N/A
rtanic (iti	Le mela sam	orer /. ityuri	Orto		7					N	
		11		11/1/	A					11	/ N/A
Sampler S	Signature 🔟	In m	11	4			•				N/A
	200	v y	P	V							
		ge of samp									
	ent										MW-5-AR
pH											
						0.786	1.132	2.083	0.841	1.769	
						4 3 4	0.4	F 20	1.22	6.03	
					Uniy	1.24	0.4	5.39	1.32	0.92	
				IL	DON'T		800	800	800	800	
•			r	nL	SAMPLE	800	300	800	300	300	

APPENDIX 4

Analytical Results from Lab

ANALYTICAL REPORT

PREPARED FOR

Attn: Anika Careaga Midwest Environmental Consultants 2009 East McCarty Street Suite 2 Jefferson City, Missouri 65101

Generated 1/30/2024 5:12:52 PM

JOB DESCRIPTION

Asbury Pond - CCR Rule Appendix III & IV

JOB NUMBER

400-247488-3

Eurofins Pensacola 3355 McLemore Drive Pensacola FL 32514

Eurofins Pensacola

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Southeast, LLC Project Manager.

Authorization

Generated 1/30/2024 5:12:52 PM

Authorized for release by Cheyenne Whitmire, Project Manager II Cheyenne.Whitmire@et.eurofinsus.com (850)471-6222

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Detection Summary	5
Method Summary	8
Sample Summary	9
Client Sample Results	10
Definitions	22
Chronicle	23
QC Association	27
QC Sample Results	30
Chain of Custody	35
Receipt Checklists	36
Cartification Summary	38

10

12

13

14

Case Narrative

Client: Midwest Environmental Consultants

Project: Asbury Pond - CCR Rule Appendix III & IV

Job ID: 400-247488-3 Eurofins Pensacola

Job Narrative 400-247488-3

Receipt

The samples were received on 11/30/2023 9:28 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperatures of the 3 coolers at receipt time were 0.0° C, 3.8° C and 5.7° C.

Metals

Method 7470A: The matrix spike (MS) recoveries for preparation batch 400-652452 and analytical batch 400-652536 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) and matrix spike duplicate (MSD) recovery is within acceptance limits.

Method 6020B: The method blank for preparation batch 400-653203 and analytical batch 400-653473 contained Molybdenum and Selenium above the method detection limit. This target analyte concentration was less than the reporting limit (RL) in the method blank; therefore, re-extraction and/or re-analysis of samples was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Eurofins Pensacola

Job ID: 400-247488-3

Page 4 of 39 1/30/2024

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond - CCR Rule Appendix III & IV

Client Sample ID: MW-2 Lab Sample ID: 400-247488-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	150		5.0	1.3	mg/L		_	9056A	Total/NA
Fluoride	0.24	J	1.0	0.22	mg/L	1		9056A	Total/NA
Sulfate	96		2.0	0.78	mg/L	2		9056A	Total/NA
Boron	0.11		0.050	0.029	mg/L	5		6020B	Total Recoverable
Calcium	26		0.25	0.13	mg/L	5		6020B	Total Recoverable
Total Dissolved Solids	380		5.0	5.0	mg/L	1		SM 2540C	Total/NA
Field pH	5.76				SU	1		Field Sampling	Total/NA

Client Sample ID: MW-3	Lab Sample ID: 400-247488-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	57		10	2.5	mg/L	10	_	9056A	Total/NA
Fluoride	0.26	J	1.0	0.22	mg/L	1		9056A	Total/NA
Sulfate	480		10	3.9	mg/L	10		9056A	Total/NA
Boron	0.052	0	.050	0.029	mg/L	5		6020B	Total
									Recoverable
Calcium	94		0.25	0.13	mg/L	5		6020B	Total
									Recoverable
Total Dissolved Solids	850		10	10	mg/L	1		SM 2540C	Total/NA
Field pH	5.77				SU	1		Field Sampling	Total/NA

Client Sample ID: MW-4

Lab Sample ID: 400-247488-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	4.6		1.0	0.25	mg/L	1	_	9056A	Total/NA
Sulfate	630		20	7.8	mg/L	20		9056A	Total/NA
Boron	0.046	J	0.050	0.029	mg/L	5		6020B	Total
									Recoverable
Calcium	270		0.25	0.13	mg/L	5		6020B	Total
									Recoverable
Total Dissolved Solids	1500		10	10	mg/L	1		SM 2540C	Total/NA
Field pH	6.65				SU	1		Field Sampling	Total/NA

Client Sample ID: MW-5

Lab Sample ID: 400-247488-4

Analyte	Result (Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	6.0		1.0	0.25	mg/L	1	_	9056A	Total/NA
Fluoride	0.36	J	1.0	0.22	mg/L	1		9056A	Total/NA
Sulfate	170		5.0	2.0	mg/L	5		9056A	Total/NA
Boron	0.30		0.050	0.029	mg/L	5		6020B	Total Recoverable
Calcium	93		0.25	0.13	mg/L	5		6020B	Total Recoverable
Total Dissolved Solids	590		5.0	5.0	mg/L	1		SM 2540C	Total/NA
Field pH	7.16				SU	1		Field Sampling	Total/NA

Client Sample ID: MW-5A

Lab Sample ID: 400-247488-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D I	Method	Prep Type
Chloride	230		5.0	1.3	mg/L		- ;	9056A	Total/NA
Sulfate	1400		200	78	mg/L	200	9	9056A	Total/NA
Boron	2.4		0.050	0.029	mg/L	5	(6020B	Total
									Recoverable

This Detection Summary does not include radiochemical test results.

Page 5 of 39

Job ID: 400-247488-3

Eurofins Pensacola

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond - CCR Rule Appendix III & IV

Client Sample ID: MW-5A (Continued)

Lab Sample ID: 400-247488-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	440		0.25	0.13	mg/L	5	_	6020B	Total
									Recoverable
Total Dissolved Solids	3300		25	25	mg/L	1		SM 2540C	Total/NA
Field pH	6.59				SU	1		Field Sampling	Total/NA

Client Sample ID: MW-5AR Lab Sample ID: 400-247488-6

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	28		1.0	0.25	mg/L	1	_	9056A	Total/NA
Fluoride	0.34	J	1.0	0.22	mg/L	1		9056A	Total/NA
Sulfate	370		10	3.9	mg/L	10		9056A	Total/NA
Boron	0.40		0.050	0.029	mg/L	5		6020B	Total
									Recoverable
Calcium	120		0.25	0.13	mg/L	5		6020B	Total
									Recoverable
Barium	26		2.5	1.8	ug/L	5		6020B	Total
									Recoverable
Lithium	120		5.0	4.9	ug/L	5		6020B	Total
									Recoverable
Molybdenum	2.2	J	15	0.46	ug/L	5		6020B	Total
									Recoverable
Total Dissolved Solids	920		10	10	mg/L	1		SM 2540C	Total/NA
Field pH	7.31				SU	1		Field Sampling	Total/NA

Client Sample ID: MW-6 Lab Sample ID: 400-247488-7

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	30		1.0	0.25	mg/L	1	_	9056A	Total/NA
Fluoride	0.24	J	1.0	0.22	mg/L	1		9056A	Total/NA
Sulfate	1100		50	20	mg/L	50		9056A	Total/NA
Boron	0.40		0.050	0.029	mg/L	5		6020B	Total
									Recoverable
Calcium	270		0.25	0.13	mg/L	5		6020B	Total
									Recoverable
Total Dissolved Solids	1900		25	25	mg/L	1		SM 2540C	Total/NA
Field pH	6.79				SU	1		Field Sampling	Total/NA

Client Sample ID: MW-6A Lab Sample ID: 400-247488-8

Analyte	Result Qualifie	r RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	86	2.0	0.50	mg/L	2	_	9056A	Total/NA
Sulfate	1100	50	20	mg/L	50		9056A	Total/NA
Boron	0.36	0.050	0.029	mg/L	5		6020B	Total
								Recoverable
Calcium	240	0.25	0.13	mg/L	5		6020B	Total
								Recoverable
Total Dissolved Solids	2000	25	25	mg/L	1		SM 2540C	Total/NA
Field pH	6.33			SU	1		Field Sampling	Total/NA

Client Sample ID: MW-7 Lab Sample ID: 400-247488-9

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	44		1.0	0.25	mg/L		_	9056A	Total/NA
Sulfate	2000		50	20	mg/L	50		9056A	Total/NA
Boron	0.30		0.050	0.029	mg/L	5		6020B	Total
									Recoverable

This Detection Summary does not include radiochemical test results.

Eurofins Pensacola

1/30/2024

Job ID: 400-247488-3

Page 6 of 39

Detection Summary

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond - CCR Rule Appendix III & IV

Client Sample ID: MW-7 (Continued) Lab Sample ID: 400-247488-9

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	490		0.25	0.13	mg/L	5	_	6020B	Total
									Recoverable
Total Dissolved Solids	2800		25	25	mg/L	1		SM 2540C	Total/NA
Field pH	6.18				SU	1		Field Sampling	Total/NA

Client Sample ID: DUPLCIATE Lab Sample ID: 400-247488-10

Analyte	Result Qualifi	ier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	6.0	1.0	0.25	mg/L	1	_	9056A	Total/NA
Fluoride	0.36 J	1.0	0.22	mg/L	1		9056A	Total/NA
Sulfate	140	10	3.9	mg/L	10		9056A	Total/NA
Boron	0.31	0.050	0.029	mg/L	5		6020B	Total
								Recoverable
Calcium	89	0.25	0.13	mg/L	5		6020B	Total
								Recoverable
Total Dissolved Solids	590	5.0	5.0	mg/L	1		SM 2540C	Total/NA

Client Sample ID: FIELD BLANK Lab Sample ID: 400-247488-11

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	140		5.0	1.3	mg/L		_	9056A	Total/NA
Fluoride	0.58	J F1	1.0	0.22	mg/L	1		9056A	Total/NA
Boron	0.035	J	0.050	0.029	mg/L	5		6020B	Total
									Recoverable
Calcium	0.46		0.25	0.13	mg/L	5		6020B	Total
									Recoverable
Total Dissolved Solids	170		5.0	5.0	mg/L	1		SM 2540C	Total/NA

Method Summary

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond - CCR Rule Appendix III & IV

Method **Method Description** Protocol Laboratory SW846 EET PEN 9056A Anions, Ion Chromatography Metals (ICP/MS) 6020B SW846 **EET PEN** 7470A Mercury (CVAA) SW846 EET PEN SM 2540C Solids, Total Dissolved (TDS) SM **EET PEN** 9315 Radium-226 (GFPC) SW846 EET SL 9320 Radium-228 (GFPC) SW846 EET SL Combined Radium-226 and Radium-228 EET SL Ra226_Ra228 TAL-STL Field Sampling Field Sampling **EPA EET PEN** Preparation, Total Recoverable or Dissolved Metals SW846 **EET PEN** 7470A Preparation, Mercury SW846 **EET PEN** PrecSep_0 Preparation, Precipitate Separation None EET SL PrecSep-21 Preparation, Precipitate Separation (21-Day In-Growth) None EET SL

Protocol References:

EPA = US Environmental Protection Agency

None = None

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL-STL = TestAmerica Laboratories, St. Louis, Facility Standard Operating Procedure.

Laboratory References:

EET PEN = Eurofins Pensacola, 3355 McLemore Drive, Pensacola, FL 32514, TEL (850)474-1001 EET SL = Eurofins St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

Job ID: 400-247488-3

3

4

5

_

8

9

11

12

13

114

Sample Summary

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond - CCR Rule Appendix III & IV

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
400-247488-1	MW-2	Water	11/28/23 13:20	11/30/23 09:28
400-247488-2	MW-3	Water	11/28/23 11:40	11/30/23 09:28
400-247488-3	MW-4	Water	11/28/23 14:05	11/30/23 09:28
400-247488-4	MW-5	Water	11/28/23 10:50	11/30/23 09:28
400-247488-5	MW-5A	Water	11/28/23 09:45	11/30/23 09:28
400-247488-6	MW-5AR	Water	11/28/23 10:15	11/30/23 09:28
00-247488-7	MW-6	Water	11/28/23 09:05	11/30/23 09:28
400-247488-8	MW-6A	Water	11/28/23 15:30	11/30/23 09:28
100-247488-9	MW-7	Water	11/28/23 14:50	11/30/23 09:28
400-247488-10	DUPLCIATE	Water	11/28/23 11:05	11/30/23 09:28
400-247488-11	FIELD BLANK	Water	11/28/23 11:15	11/30/23 09:28

1

Job ID: 400-247488-3

3

4

J

7

8

9

10

13

12

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond - CCR Rule Appendix III & IV

Client Sample ID: MW-2 Lab Sample ID: 400-247488-1

Date Collected: 11/28/23 13:20 Date Received: 11/30/23 09:28

Matrix: Water

Method: SW846 9056A - Anions, lo	ก Chromato	graphy							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	150		5.0	1.3	mg/L			12/04/23 15:57	5
Fluoride	0.24	J	1.0	0.22	mg/L			12/01/23 15:47	1
Sulfate	96		2.0	0.78	mg/L			12/01/23 15:55	2
- Method: SW846 6020B - Metals (ICI	P/MS) - Total	Recoverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	0.11		0.050	0.029	mg/L		12/07/23 08:30	12/07/23 19:44	5
Calcium	26		0.25	0.13	mg/L		12/07/23 08:30	12/07/23 19:44	5
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	380		5.0	5.0	mg/L			12/04/23 23:18	1
- Method: EPA Field Sampling - Field	l Sampling								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Field pH	5.76				SU			11/28/23 13:20	1

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond - CCR Rule Appendix III & IV

Client Sample ID: MW-3 Lab Sample ID: 400-247488-2

Date Collected: 11/28/23 11:40 Date Received: 11/30/23 09:28

Matrix: Water

Job ID: 400-247488-3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	57		10	2.5	mg/L			12/01/23 16:10	10
Fluoride	0.26	J	1.0	0.22	mg/L			12/01/23 16:02	1
Sulfate	480		10	3.9	mg/L			12/01/23 16:10	10
Method: SW846 6020B - Metals (ICF	P/MS) - Total	Recoverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	0.052		0.050	0.029	mg/L		12/07/23 08:30	12/07/23 19:36	5
Calcium	94		0.25	0.13	mg/L		12/07/23 08:30	12/07/23 19:36	5
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	850		10	10	mg/L			12/04/23 23:18	1
Method: EPA Field Sampling - Field	l Sampling								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Field pH	5.77				SU			11/28/23 11:40	1

Eurofins Pensacola

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond - CCR Rule Appendix III & IV

Client Sample ID: MW-4 Lab Sample ID: 400-247488-3

Date Collected: 11/28/23 14:05 Date Received: 11/30/23 09:28

Matrix: Water

Job ID: 400-247488-3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	4.6		1.0	0.25	mg/L			12/01/23 16:33	1
Fluoride	ND		1.0	0.22	mg/L			12/01/23 16:33	1
Sulfate	630		20	7.8	mg/L			12/04/23 16:04	20
Method: SW846 6020B - Metals (ICI	P/MS) - Total	Recoverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	0.046	J	0.050	0.029	mg/L		12/07/23 08:30	12/07/23 19:39	5
Calcium	270		0.25	0.13	mg/L		12/07/23 08:30	12/07/23 19:39	5
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	1500		10	10	mg/L			12/04/23 23:18	1
Method: EPA Field Sampling - Field	l Sampling								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Field pH	6.65				SU			11/28/23 14:05	1

Eurofins Pensacola

Page 12 of 39

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond - CCR Rule Appendix III & IV

Client Sample ID: MW-5 Lab Sample ID: 400-247488-4

Date Collected: 11/28/23 10:50

Matrix: Water Date Received: 11/30/23 09:28

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	6.0		1.0	0.25	mg/L			12/01/23 16:48	1
Fluoride	0.36	J	1.0	0.22	mg/L			12/01/23 16:48	1
Sulfate	170		5.0	2.0	mg/L			12/04/23 16:12	5
Method: SW846 6020B - Metals (ICI	P/MS) - Total	Recoverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	0.30		0.050	0.029	mg/L		12/07/23 08:30	12/07/23 19:42	5
Calcium	93		0.25	0.13	mg/L		12/07/23 08:30	12/07/23 19:42	5
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	590		5.0	5.0	mg/L			12/04/23 23:18	1
Method: EPA Field Sampling - Field	l Sampling								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Field pH	7.16				SU			11/28/23 10:50	1

Client: Midwest Environmental Consultants

Date Received: 11/30/23 09:28

Project/Site: Asbury Pond - CCR Rule Appendix III & IV

Lab Sample ID: 400-247488-5

Client Sample ID: MW-5A Date Collected: 11/28/23 09:45

Matrix: Water

Job ID: 400-247488-3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	230		5.0	1.3	mg/L			12/04/23 16:34	5
Fluoride	ND		1.0	0.22	mg/L			12/01/23 17:03	1
Sulfate	1400		200	78	mg/L			12/01/23 17:10	200
Method: SW846 6020B - Metals (ICF	P/MS) - Total	Recoverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	2.4		0.050	0.029	mg/L		12/07/23 08:30	12/07/23 19:46	5
Calcium	440		0.25	0.13	mg/L		12/07/23 08:30	12/07/23 19:46	5
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	3300		25	25	mg/L			12/04/23 23:18	1
Method: EPA Field Sampling - Field	Sampling								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Field pH	6.59				SU			11/28/23 09:45	1

Eurofins Pensacola

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond - CCR Rule Appendix III & IV

Client Sample ID: MW-5AR

2.2 J

ND

ND

Lab Sample ID: 400-247488-6 Date Collected: 11/28/23 10:15 Matrix: Water

Date Received: 11/30/23 09:28

Molybdenum

Selenium

Thallium

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	28		1.0	0.25	mg/L			12/01/23 17:18	1
Fluoride	0.34	J	1.0	0.22	mg/L			12/01/23 17:18	1
Sulfate	370		10	3.9	mg/L			12/01/23 17:25	10
Method: SW846 6020B -	Metals (ICP/MS) - Total	Recoverable)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		2.5	0.50	ug/L		12/07/23 08:30	12/07/23 19:49	5
Boron	0.40		0.050	0.029	mg/L		12/07/23 08:30	12/07/23 19:49	5
Arsenic	ND		1.3	1.2	ug/L		12/07/23 08:30	12/07/23 19:49	5
Calcium	120		0.25	0.13	mg/L		12/07/23 08:30	12/07/23 19:49	5
Barium	26		2.5	1.8	ug/L		12/07/23 08:30	12/07/23 19:49	5
Beryllium	ND		2.5	0.28	ug/L		12/07/23 08:30	12/07/23 19:49	5
Cadmium	ND		2.5	0.65	ug/L		12/07/23 08:30	12/07/23 19:49	5
Chromium	ND		2.5	2.1	ug/L		12/07/23 08:30	12/07/23 19:49	5
Cobalt	ND		2.5	0.56	ug/L		12/07/23 08:30	12/07/23 19:49	5
Lead	ND		1.3	0.81	ug/L		12/07/23 08:30	12/07/23 19:49	5
Lithium	120		5.0	4.9	ug/L		12/07/23 08:30	12/07/23 20:06	5

Method: 544646 /470A - Mercury (CV/	1 A)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.20	0.15	ug/L		12/01/23 07:58	12/01/23 12:01	1
Γ									

15

1.3

0.50

0.46 ug/L

0.82 ug/L

0.11 ug/L

12/07/23 08:30

12/07/23 08:30

12/07/23 08:30

12/07/23 19:49

12/07/23 19:49

12/07/23 19:49

General Chemistry								
	Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
	Total Dissolved Solids (SM 2540C)	920	10	10 mg/L			12/04/23 23:18	1

	315 - Radium-2	26 (GFPC)								
		, ,	Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.604		0.220	0.226	1.00	0.205	pCi/L	12/06/23 09:19	01/05/24 09:24	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	99.3		30 - 110					12/06/23 09:19	01/05/24 09:24	1

Method: SW846 93	320 - Radium-2	28 (GFPC)								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	1.34		0.404	0.423	1.00	0.440	pCi/L	12/06/23 09:25	01/04/24 12:03	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	99.3		30 - 110					12/06/23 09:25	01/04/24 12:03	1
Y Carrier	81.5		30 - 110					12/06/23 09:25	01/04/24 12:03	1

Client: Midwest Environmental Consultants

Job ID: 400-247488-3

Project/Site: Asbury Pond - CCR Rule Appendix III & IV

Client Sample ID: MW-5AR Lab Sample ID: 400-247488-6

Date Collected: 11/28/23 10:15 Matrix: Water

Date Received: 11/30/23 09:28

Method: TAL-STL Ra226_Ra228 - Combined Radium-226 and Radium-228

Combined Radium	1.94		0.460	0.480	5.00	0.440	pCi/L		01/08/24 11:54	1
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
			Uncert.	Uncert.						
			Count	iolai						

226 + 228

Method: EPA Field Sampling - Field Sampling

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Field pH	7.31				SU			11/28/23 10:15	1

0

7

8

9

11

13

14

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond - CCR Rule Appendix III & IV

Client Sample ID: MW-6 Lab Sample ID: 400-247488-7

Date Collected: 11/28/23 09:05 Date Received: 11/30/23 09:28

Matrix: Water

Job ID: 400-247488-3

	ո Chromatog								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	30		1.0	0.25	mg/L			12/01/23 17:33	1
Fluoride	0.24	J	1.0	0.22	mg/L			12/01/23 17:33	1
Sulfate	1100		50	20	mg/L			12/04/23 16:42	50
Method: SW846 6020B - Metals (ICI	P/MS) - Total	Recoverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	0.40		0.050	0.029	mg/L		12/07/23 08:30	12/07/23 19:52	5
Calcium	270		0.25	0.13	mg/L		12/07/23 08:30	12/07/23 19:52	5
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	1900		25	25	mg/L			12/04/23 23:18	1
- Method: EPA Field Sampling - Field	Sampling								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Field pH	6.79				SU			11/28/23 09:05	1

Eurofins Pensacola

Client: Midwest Environmental Consultants

Client Sample ID: MW-6A Date Collected: 11/28/23 15:30

Date Received: 11/30/23 09:28

Field pH

Project/Site: Asbury Pond - CCR Rule Appendix III & IV

Lab Sample ID: 400-247488-8

11/28/23 15:30

Matrix: Water

Job ID: 400-247488-3

86 ND		2.0	0.50	ma/L			12/05/23 16:53	2
ND							12/03/23 10.33	
ND		1.0	0.22	mg/L			12/01/23 18:03	1
1100		50	20	mg/L			12/05/23 17:23	50
S) - Total	Recoverable)						
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
0.36		0.050	0.029	mg/L		12/07/23 08:30	12/07/23 19:56	5
240		0.25	0.13	mg/L		12/07/23 08:30	12/07/23 19:56	5
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2000		25	25	mg/L			12/04/23 23:18	1
	Result 0.36 240 Result	Result Qualifier 0.36 240 Result Qualifier	S - Total Recoverable Result Qualifier RL	S - Total Recoverable Result Qualifier RL MDL	S - Total Recoverable Result Qualifier RL MDL Unit	S - Total Recoverable Result Qualifier RL MDL Unit D	S - Total Recoverable Result Qualifier RL MDL Unit D Prepared	S - Total Recoverable Result Qualifier RL MDL Unit D Prepared Analyzed

6.33

SU

1/30/2024

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond - CCR Rule Appendix III & IV

Client Sample ID: MW-7 Lab Sample ID: 400-247488-9

Date Collected: 11/28/23 14:50 Date Received: 11/30/23 09:28

Matrix: Water

Job ID: 400-247488-3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	44		1.0	0.25	mg/L			12/01/23 18:18	1
Fluoride	ND		1.0	0.22	mg/L			12/01/23 18:18	1
Sulfate	2000		50	20	mg/L			12/04/23 16:57	50
Method: SW846 6020B - Metals (ICI	P/MS) - Total	Recoverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	0.30		0.050	0.029	mg/L		12/07/23 08:30	12/07/23 19:59	5
Calcium	490		0.25	0.13	mg/L		12/07/23 08:30	12/07/23 19:59	5
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	2800		25	25	mg/L			12/04/23 23:18	1
Method: EPA Field Sampling - Field	Sampling								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Field pH	6.18				SU			11/28/23 14:50	

Eurofins Pensacola

Page 19 of 39

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond - CCR Rule Appendix III & IV

Client Sample ID: DUPLCIATE

Lab Sample ID: 400-247488-10

Date Collected: 11/28/23 11:05 Matrix: Water Date Received: 11/30/23 09:28

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	6.0		1.0	0.25	mg/L			12/01/23 19:10	1
Fluoride	0.36	J	1.0	0.22	mg/L			12/01/23 19:10	1
Sulfate	140		10	3.9	mg/L			12/01/23 19:18	10
Method: SW846 6020B - Metals (IC Analyte	•	Recoverable Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	Result					<u>D</u>			Dil Fac
•	•		0.050 0.25	0.029	mg/L	<u>D</u>	Prepared 12/07/23 08:30 12/07/23 08:30	Analyzed 12/07/23 20:02 12/07/23 20:02	Dil Fac
Analyte Boron	Result 0.31		0.050	0.029	mg/L	<u>D</u>	12/07/23 08:30	12/07/23 20:02	5
Analyte Boron Calcium	Result 0.31		0.050	0.029	mg/L	<u>D</u>	12/07/23 08:30	12/07/23 20:02	5
Analyte Boron	0.31 89		0.050	0.029	mg/L mg/L	<u>D</u>	12/07/23 08:30	12/07/23 20:02	5

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond - CCR Rule Appendix III & IV

Client Sample ID: FIELD BLANK

Lab Sample ID: 400-247488-11 Date Collected: 11/28/23 11:15

Matrix: Water

Job ID: 400-247488-3

Date Received: 11/30/23 09:28

Method: SW846 9056A - Anions, Io	n Chromato	graphy							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	140		5.0	1.3	mg/L			12/04/23 15:49	5
Fluoride	0.58	J F1	1.0	0.22	mg/L			12/01/23 15:25	1
Sulfate	ND	F1	1.0	0.39	mg/L			12/01/23 15:25	1
Analyte	•	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Method: SW846 6020B - Metals (IC	•			MDI	Unit	D	Dronored	Analyzad	Dil Ess
Boron	0.035	J	0.050	0.029	mg/L		12/07/23 08:30	12/07/23 20:05	5
Calcium	0.46		0.25	0.13	mg/L		12/07/23 08:30	12/07/23 20:05	5
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	170		5.0	5.0	ma/L			12/04/23 23:18	1

Definitions/Glossary

Client: Midwest Environmental Consultants

Job ID: 400-247488-3

Project/Site: Asbury Pond - CCR Rule Appendix III & IV

Qualifiers

Qualifier	Qualifier Description	
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not	
	applicable.	
E	Result exceeded calibration range.	
F1	MS and/or MSD recovery exceeds control limits.	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
Metals		

Metals	
Qualifier	Qualifier Description
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.
F1	MS and/or MSD recovery exceeds control limits.
F2	MS/MSD RPD exceeds control limits
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
Rad	
Qualifier	Qualifier Description
U	Result is less than the sample detection limit.

Glossarv

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DI O	

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit

ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit
NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present
PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Pensacola

Page 22 of 39 1/30/2024

Project/Site: Asbury Pond - CCR Rule Appendix III & IV

Client Sample ID: MW-2

Date Collected: 11/28/23 13:20 Date Received: 11/30/23 09:28

Lab Sample ID: 400-247488-1

Matrix: Water

Job ID: 400-247488-3

Batch Batch Dil Initial Final Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab 9056A Total/NA Analysis 652597 12/01/23 15:47 JN EET PEN Total/NA Analysis 9056A 2 652597 12/01/23 15:55 JN EET PEN Total/NA 9056A 5 652852 12/04/23 15:57 JN EET PEN Analysis EET PEN Total Recoverable Prep 3005A 50 mL 50 mL 653203 12/07/23 08:30 MS 12/07/23 11:38 ¹ Completed: 6020B 5 Total Recoverable Analysis 653473 12/07/23 19:44 NTH **EET PEN** Total/NA SM 2540C 1 50 mL 50 mL 652922 12/04/23 23:18 НА Analysis **EET PEN** Total/NA Analysis Field Sampling 658367 11/28/23 13:20 C1H **EET PEN**

Client Sample ID: MW-3

Date Collected: 11/28/23 11:40

Date Received: 11/30/23 09:28

Lab Sample ID: 400-247488-2

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		1			652597	12/01/23 16:02	JN	EET PEN
Total/NA	Analysis	9056A		10			652597	12/01/23 16:10	JN	EET PEN
Total Recoverable	Prep	3005A			50 mL	50 mL	653203	12/07/23 08:30	MS	EET PEN
							Completed:	12/07/23 11:38 1		
Total Recoverable	Analysis	6020B		5			653454	12/07/23 19:36	NTH	EET PEN
Total/NA	Analysis	SM 2540C		1	25 mL	50 mL	652922	12/04/23 23:18	HA	EET PEN
Total/NA	Analysis	Field Sampling		1			658367	11/28/23 11:40	C1H	EET PEN

Client Sample ID: MW-4

Date Collected: 11/28/23 14:05

Date Received: 11/30/23 09:28

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A	_	1			652597	12/01/23 16:33	JN	EET PEN
Total/NA	Analysis	9056A		20			652852	12/04/23 16:04	JN	EET PEN
Total Recoverable	Prep	3005A			50 mL	50 mL	653203	12/07/23 08:30	MS	EET PEN
							Completed:	12/07/23 11:38 1		
Total Recoverable	Analysis	6020B		5			653454	12/07/23 19:39	NTH	EET PEN
Total/NA	Analysis	SM 2540C		1	25 mL	50 mL	652922	12/04/23 23:18	НА	EET PEN
Total/NA	Analysis	Field Sampling		1			658367	11/28/23 14:05	C1H	EET PEN

Client Sample ID: MW-5

Date Collected: 11/28/23 10:50

Date Received: 11/30/23 09:28

Lab Sample	ID: 400-247488-4

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		1			652597	12/01/23 16:48	JN	EET PEN
Total/NA	Analysis	9056A		5			652852	12/04/23 16:12	JN	EET PEN

Eurofins Pensacola

Page 23 of 39

Lab Chronicle

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond - CCR Rule Appendix III & IV

Client Sample ID: MW-5 Lab Sample ID: 400-247488-4 Date Collected: 11/28/23 10:50 Matrix: Water

Date Received: 11/30/23 09:28

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			50 mL	50 mL	653203	12/07/23 08:30	MS	EET PEN
Total Recoverable	Analysis	6020B		5			653454	12/07/23 19:42	NTH	EET PEN
Total/NA	Analysis	SM 2540C		1	50 mL	50 mL	652922	12/04/23 23:18	НА	EET PEN
Total/NA	Analysis	Field Sampling		1			658367	11/28/23 10:50	C1H	EET PEN

Client Sample ID: MW-5A Lab Sample ID: 400-247488-5 Date Collected: 11/28/23 09:45 Matrix: Water

Date Received: 11/30/23 09:28

Date Received: 11/30/23 09:28

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		1			652597	12/01/23 17:03	JN	EET PEN
Total/NA	Analysis	9056A		200			652597	12/01/23 17:10	JN	EET PEN
Total/NA	Analysis	9056A		5			652852	12/04/23 16:34	JN	EET PEN
Total Recoverable	Prep	3005A			50 mL	50 mL	653203	12/07/23 08:30	MS	EET PEN
							Completed:	12/07/23 11:38 1		
Total Recoverable	Analysis	6020B		5			653454	12/07/23 19:46	NTH	EET PEN
Total/NA	Analysis	SM 2540C		1	10 mL	50 mL	652922	12/04/23 23:18	НА	EET PEN
Total/NA	Analysis	Field Sampling		1			658367	11/28/23 09:45	C1H	EET PEN

Client Sample ID: MW-5AR Lab Sample ID: 400-247488-6 Date Collected: 11/28/23 10:15 Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		1			652597	12/01/23 17:18	JN	EET PEN
Total/NA	Analysis	9056A		10			652597	12/01/23 17:25	JN	EET PEN
Total Recoverable	Prep	3005A			50 mL	50 mL	653203	12/07/23 08:30	MS	EET PEN
							Completed:	12/07/23 11:38 1		
Total Recoverable	Analysis	6020B		5			653473	12/07/23 20:06	NTH	EET PEN
Total Recoverable	Prep	3005A			50 mL	50 mL	653203	12/07/23 08:30	MS	EET PEN
							Completed:	12/07/23 11:38 1		
Total Recoverable	Analysis	6020B		5			653454	12/07/23 19:49	NTH	EET PEN
Total/NA	Prep	7470A			40 mL	40 mL	652452	12/01/23 07:58	JR	EET PEN
							Completed:	12/01/23 10:47 1		
Total/NA	Analysis	7470A		1			652536	12/01/23 12:01	JR	EET PEN
Total/NA	Analysis	SM 2540C		1	25 mL	50 mL	652922	12/04/23 23:18	HA	EET PEN
Total/NA	Prep	PrecSep-21			990.95 mL	1.0 g	639652	12/06/23 09:19	KAC	EET SL
Total/NA	Analysis	9315		1			643079	01/05/24 09:24	EMH	EET SL
Total/NA	Prep	PrecSep_0			990.95 mL	1.0 g	639653	12/06/23 09:25	KAC	EET SL
Total/NA	Analysis	9320		1			643034	01/04/24 12:03	FLC	EET SL
Total/NA	Analysis	Ra226_Ra228		1			643247	01/08/24 11:54	EMH	EET SL
Total/NA	Analysis	Field Sampling		1			658367	11/28/23 10:15	C1H	EET PEN

Eurofins Pensacola

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond - CCR Rule Appendix III & IV

Client Sample ID: MW-6

Date Collected: 11/28/23 09:05 Date Received: 11/30/23 09:28

Lab Sample ID: 400-247488-7

Matrix: Water

Job ID: 400-247488-3

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		1			652597	12/01/23 17:33	JN	EET PEN
Total/NA	Analysis	9056A		50			652852	12/04/23 16:42	JN	EET PEN
Total Recoverable	Prep	3005A			50 mL	50 mL	653203	12/07/23 08:30	MS	EET PEN
							Completed:	12/07/23 11:38 1		
Total Recoverable	Analysis	6020B		5			653454	12/07/23 19:52	NTH	EET PEN
Total/NA	Analysis	SM 2540C		1	10 mL	50 mL	652922	12/04/23 23:18	HA	EET PEN
Total/NA	Analysis	Field Sampling		1			658367	11/28/23 09:05	C1H	EET PEN

Client Sample ID: MW-6A

Date Collected: 11/28/23 15:30

Date Received: 11/30/23 09:28

Lab Sample ID: 400-247488-8

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		1			652597	12/01/23 18:03	JN	EET PEN
Total/NA	Analysis	9056A		2			652984	12/05/23 16:53	JN	EET PEN
Total/NA	Analysis	9056A		50			652984	12/05/23 17:23	JN	EET PEN
Total Recoverable	Prep	3005A			50 mL	50 mL	653203	12/07/23 08:30	MS	EET PEN
							Completed:	12/07/23 11:38 1		
Total Recoverable	Analysis	6020B		5			653454	12/07/23 19:56	NTH	EET PEN
Total/NA	Analysis	SM 2540C		1	10 mL	50 mL	652922	12/04/23 23:18	HA	EET PEN
Total/NA	Analysis	Field Sampling		1			658367	11/28/23 15:30	C1H	EET PEN

Client Sample ID: MW-7

Date Collected: 11/28/23 14:50

Date Received: 11/30/23 09:28

Lab Sample	e ID: 400-2	47488-9
------------	-------------	---------

Lab Sample ID: 400-247488-10

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		1			652597	12/01/23 18:18	JN	EET PEN
Total/NA	Analysis	9056A		50			652852	12/04/23 16:57	JN	EET PEN
Total Recoverable	Prep	3005A			50 mL	50 mL	653203	12/07/23 08:30	MS	EET PEN
							Completed:	12/07/23 11:38 1		
Total Recoverable	Analysis	6020B		5			653454	12/07/23 19:59	NTH	EET PEN
Total/NA	Analysis	SM 2540C		1	10 mL	50 mL	652922	12/04/23 23:18	HA	EET PEN
Total/NA	Analysis	Field Sampling		1			658367	11/28/23 14:50	C1H	EET PEN

Client Sample ID: DUPLCIATE

Date Collected: 11/28/23 11:05

Date Received: 11/30/23 09:28

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		1			652605	12/01/23 19:10	JN	EET PEN
Total/NA	Analysis	9056A		10			652605	12/01/23 19:18	JN	EET PEN

Page 25 of 39

Matrix: Water

Lab Chronicle

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond - CCR Rule Appendix III & IV

Client Sample ID: DUPLCIATE

Lab Sample ID: 400-247488-10

Matrix: Water

Job ID: 400-247488-3

Date Collected: 11/28/23 11:05 Date Received: 11/30/23 09:28

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			50 mL	50 mL	653203	12/07/23 08:30	MS	EET PEN
Total Recoverable	Analysis	6020B		5			653454	12/07/23 20:02	NTH	EET PEN
Total/NA	Analysis	SM 2540C		1	50 mL	50 mL	652922	12/04/23 23:18	HA	EET PEN

Client Sample ID: FIELD BLANK

Date Collected: 11/28/23 11:15 Date Received: 11/30/23 09:28 Lab Sample ID: 400-247488-11

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		1			652597	12/01/23 15:25	JN	EET PEN
Total/NA	Analysis	9056A		5			652852	12/04/23 15:49	JN	EET PEN
Total Recoverable	Prep	3005A			50 mL	50 mL	653203	12/07/23 08:30	MS	EET PEN
							Completed:	12/07/23 11:38 1		
Total Recoverable	Analysis	6020B		5			653454	12/07/23 20:05	NTH	EET PEN
Total/NA	Analysis	SM 2540C		1	50 mL	50 mL	652922	12/04/23 23:18	HA	EET PEN

¹ This procedure uses a method stipulated length of time for the process. Both start and end times are displayed.

Laboratory References:

EET PEN = Eurofins Pensacola, 3355 McLemore Drive, Pensacola, FL 32514, TEL (850)474-1001 EET SL = Eurofins St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

2

4

5

9

11

13

14

QC Association Summary

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond - CCR Rule Appendix III & IV

Job ID: 400-247488-3

HPLC/IC

Analysis Batch: 652597

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
400-247488-1	MW-2	Total/NA	Water	9056A	
400-247488-1	MW-2	Total/NA	Water	9056A	
400-247488-2	MW-3	Total/NA	Water	9056A	
400-247488-2	MW-3	Total/NA	Water	9056A	
400-247488-3	MW-4	Total/NA	Water	9056A	
400-247488-4	MW-5	Total/NA	Water	9056A	
400-247488-5	MW-5A	Total/NA	Water	9056A	
400-247488-5	MW-5A	Total/NA	Water	9056A	
400-247488-6	MW-5AR	Total/NA	Water	9056A	
400-247488-6	MW-5AR	Total/NA	Water	9056A	
400-247488-7	MW-6	Total/NA	Water	9056A	
400-247488-8	MW-6A	Total/NA	Water	9056A	
400-247488-9	MW-7	Total/NA	Water	9056A	
400-247488-11	FIELD BLANK	Total/NA	Water	9056A	
400-247488-11 MS	FIELD BLANK	Total/NA	Water	9056A	
400-247488-11 MSD	FIELD BLANK	Total/NA	Water	9056A	

Analysis Batch: 652605

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-247488-10	DUPLCIATE	Total/NA	Water	9056A	
400-247488-10	DUPLCIATE	Total/NA	Water	9056A	

Analysis Batch: 652852

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-247488-1	MW-2	Total/NA	Water	9056A	
400-247488-3	MW-4	Total/NA	Water	9056A	
400-247488-4	MW-5	Total/NA	Water	9056A	
400-247488-5	MW-5A	Total/NA	Water	9056A	
400-247488-7	MW-6	Total/NA	Water	9056A	
400-247488-9	MW-7	Total/NA	Water	9056A	
400-247488-11	FIELD BLANK	Total/NA	Water	9056A	

Analysis Batch: 652984

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-247488-8	MW-6A	Total/NA	Water	9056A	
400-247488-8	MW-6A	Total/NA	Water	9056A	

Metals

Prep Batch: 652452

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-247488-6	MW-5AR	Total/NA	Water	7470A	
MB 400-652452/14-A	Method Blank	Total/NA	Water	7470A	
LCS 400-652452/15-A	Lab Control Sample	Total/NA	Water	7470A	
400-247488-B-1-B MS	Matrix Spike	Total/NA	Water	7470A	
400-247488-B-1-C MSD	Matrix Spike Duplicate	Total/NA	Water	7470A	

Analysis Batch: 652536

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-247488-6	MW-5AR	Total/NA	Water	7470A	652452
MB 400-652452/14-A	Method Blank	Total/NA	Water	7470A	652452

Eurofins Pensacola

Page 27 of 39

QC Association Summary

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond - CCR Rule Appendix III & IV

Metals (Continued)

Analysis Batch: 652536 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 400-652452/15-A	Lab Control Sample	Total/NA	Water	7470A	652452
400-247488-B-1-B MS	Matrix Spike	Total/NA	Water	7470A	652452
400-247488-B-1-C MSD	Matrix Spike Duplicate	Total/NA	Water	7470A	652452

Prep Batch: 653203

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
400-247488-1	MW-2	Total Recoverable	Water	3005A	
400-247488-2	MW-3	Total Recoverable	Water	3005A	
400-247488-3	MW-4	Total Recoverable	Water	3005A	
400-247488-4	MW-5	Total Recoverable	Water	3005A	
400-247488-5	MW-5A	Total Recoverable	Water	3005A	
400-247488-6	MW-5AR	Total Recoverable	Water	3005A	
400-247488-7	MW-6	Total Recoverable	Water	3005A	
400-247488-8	MW-6A	Total Recoverable	Water	3005A	
400-247488-9	MW-7	Total Recoverable	Water	3005A	
400-247488-10	DUPLCIATE	Total Recoverable	Water	3005A	
400-247488-11	FIELD BLANK	Total Recoverable	Water	3005A	
MB 400-653203/1-A ^5	Method Blank	Total Recoverable	Water	3005A	
LCS 400-653203/2-A ^5	Lab Control Sample	Total Recoverable	Water	3005A	
680-243494-A-7-B MS ^5	Matrix Spike	Total Recoverable	Water	3005A	
680-243494-A-7-C MSD ^5	Matrix Spike Duplicate	Total Recoverable	Water	3005A	

Analysis Batch: 653454

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-247488-2	MW-3	Total Recoverable	Water	6020B	653203
400-247488-3	MW-4	Total Recoverable	Water	6020B	653203
400-247488-4	MW-5	Total Recoverable	Water	6020B	653203
400-247488-5	MW-5A	Total Recoverable	Water	6020B	653203
400-247488-6	MW-5AR	Total Recoverable	Water	6020B	653203
400-247488-7	MW-6	Total Recoverable	Water	6020B	653203
400-247488-8	MW-6A	Total Recoverable	Water	6020B	653203
400-247488-9	MW-7	Total Recoverable	Water	6020B	653203
400-247488-10	DUPLCIATE	Total Recoverable	Water	6020B	653203
400-247488-11	FIELD BLANK	Total Recoverable	Water	6020B	653203
MB 400-653203/1-A ^5	Method Blank	Total Recoverable	Water	6020B	653203
LCS 400-653203/2-A ^5	Lab Control Sample	Total Recoverable	Water	6020B	653203

Analysis Batch: 653473

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-247488-1	MW-2	Total Recoverable	Water	6020B	653203
400-247488-6	MW-5AR	Total Recoverable	Water	6020B	653203
MB 400-653203/1-A ^5	Method Blank	Total Recoverable	Water	6020B	653203
LCS 400-653203/2-A ^5	Lab Control Sample	Total Recoverable	Water	6020B	653203
680-243494-A-7-B MS ^5	Matrix Spike	Total Recoverable	Water	6020B	653203
680-243494-A-7-C MSD ^5	Matrix Spike Duplicate	Total Recoverable	Water	6020B	653203

General Chemistry

Analysis Batch: 652922

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-247488-1	MW-2	Total/NA	Water	SM 2540C	

Eurofins Pensacola

Page 28 of 39 1/30/2024

QC Association Summary

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond - CCR Rule Appendix III & IV

General Chemistry (Continued)

Analysis Batch: 652922 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-247488-2	MW-3	Total/NA	Water	SM 2540C	
400-247488-3	MW-4	Total/NA	Water	SM 2540C	
400-247488-4	MW-5	Total/NA	Water	SM 2540C	
400-247488-5	MW-5A	Total/NA	Water	SM 2540C	
400-247488-6	MW-5AR	Total/NA	Water	SM 2540C	
400-247488-7	MW-6	Total/NA	Water	SM 2540C	
400-247488-8	MW-6A	Total/NA	Water	SM 2540C	
400-247488-9	MW-7	Total/NA	Water	SM 2540C	
400-247488-10	DUPLCIATE	Total/NA	Water	SM 2540C	
400-247488-11	FIELD BLANK	Total/NA	Water	SM 2540C	
MB 400-652922/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 400-652922/2	Lab Control Sample	Total/NA	Water	SM 2540C	
400-247488-10 DU	DUPLCIATE	Total/NA	Water	SM 2540C	

Rad

Prep Batch: 639652

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-247488-6	MW-5AR	Total/NA	Water	PrecSep-21	
MB 160-639652/1-A	Method Blank	Total/NA	Water	PrecSep-21	
LCS 160-639652/2-A	Lab Control Sample	Total/NA	Water	PrecSep-21	
280-185127-D-2-A DU	Duplicate	Total/NA	Water	PrecSep-21	

Prep Batch: 639653

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-247488-6	MW-5AR	Total/NA	Water	PrecSep_0	
MB 160-639653/1-A	Method Blank	Total/NA	Water	PrecSep_0	
LCS 160-639653/2-A	Lab Control Sample	Total/NA	Water	PrecSep_0	
280-185127-D-2-B DU	Duplicate	Total/NA	Water	PrecSep_0	

Field Service / Mobile Lab

Analysis Batch: 658367

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-247488-1	MW-2	Total/NA	Water	Field Sampling	
400-247488-2	MW-3	Total/NA	Water	Field Sampling	
400-247488-3	MW-4	Total/NA	Water	Field Sampling	
400-247488-4	MW-5	Total/NA	Water	Field Sampling	
400-247488-5	MW-5A	Total/NA	Water	Field Sampling	
400-247488-6	MW-5AR	Total/NA	Water	Field Sampling	
400-247488-7	MW-6	Total/NA	Water	Field Sampling	
400-247488-8	MW-6A	Total/NA	Water	Field Sampling	
400-247488-9	MW-7	Total/NA	Water	Field Sampling	

Eurofins Pensacola

Page 29 of 39

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond - CCR Rule Appendix III & IV

Method: 9056A - Anions, Ion Chromatography

Lab Sample ID: 400-247488-11 MS

Matrix: Water

Analysis Batch: 652597

Client Sample ID: FIELD BLANK

Prep Type: Total/NA

Job ID: 400-247488-3

Sample Sample Spike MS MS %Rec Result Qualifier Added Analyte Result Qualifier Unit %Rec Limits Chloride 140 E 10.0 157 E4 mg/L 147 80 - 120 Fluoride 0.58 JF1 10.0 15.2 F1 mg/L 146 80 - 120 ND F1 Sulfate 10.0 16.8 F1 mg/L 80 - 120 168

Lab Sample ID: 400-247488-11 MSD

Matrix: Water

Analysis Batch: 652597

Client Sample ID: FIELD BLANK

Prep Type: Total/NA

Sample Sample Spike MSD MSD %Rec RPD Result Qualifier RPD Limit Analyte Added Result Qualifier %Rec Limits Unit Chloride 140 Ε 10.0 152 Ε mg/L Fluoride 0.58 JF1 10.0 9.80 mg/L Sulfate ND F1 10.0 9.51 mg/L

RL

0.050

0.25

MDL Unit

0.13 mg/L

mg/L

0.029

MB MB Result Qualifier

ND

ND

Method: 6020B - Metals (ICP/MS)

Lab Sample ID: MB 400-653203/1-A ^5

Matrix: Water

Analyte

Boron

Calcium

Analysis Batch: 653454

Client Sample ID: Method Blank **Prep Type: Total Recoverable**

Prepared

Prep Batch: 653203

12/07/23 08:30 12/07/23 19:03 5 12/07/23 08:30 12/07/23 19:03 5

Analyzed

Lab Sample ID: MB 400-653203/1-A ^5

Matrix: Water

Analysis Batch: 653473

Client Sample ID: Method Blank **Prep Type: Total Recoverable**

Prep Batch: 653203

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.0025	0.00050	mg/L		12/07/23 08:30	12/07/23 19:16	5
Arsenic	ND		0.0013	0.0012	mg/L		12/07/23 08:30	12/07/23 19:16	5
Barium	ND		0.0025	0.0018	mg/L		12/07/23 08:30	12/07/23 19:16	5
Beryllium	ND		0.0025	0.00028	mg/L		12/07/23 08:30	12/07/23 19:16	5
Cadmium	ND		0.0025	0.00065	mg/L		12/07/23 08:30	12/07/23 19:16	5
Chromium	ND		0.0025	0.0021	mg/L		12/07/23 08:30	12/07/23 19:16	5
Cobalt	ND		0.0025	0.00056	mg/L		12/07/23 08:30	12/07/23 19:16	5
Lead	ND		0.0013	0.00081	mg/L		12/07/23 08:30	12/07/23 19:16	5
Lithium	ND		0.0050	0.0049	mg/L		12/07/23 08:30	12/07/23 19:16	5
Molybdenum	0.000460	J	0.015	0.00046	mg/L		12/07/23 08:30	12/07/23 19:16	5
Selenium	0.00105	J	0.0013	0.00082	mg/L		12/07/23 08:30	12/07/23 19:16	5
Thallium	ND		0.00050	0.00011	mg/L		12/07/23 08:30	12/07/23 19:16	5

Lab Sample ID: LCS 400-653203/2-A ^5

Matrix: Water

Analysis Batch: 653454

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable

Prep Batch: 653203

•	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Boron	 0.100	0.108		mg/L		108	80 - 120	
Calcium	5.00	5.11		mg/L		102	80 - 120	

Eurofins Pensacola

Page 30 of 39

Dil Fac

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond - CCR Rule Appendix III & IV

Method: 6020B - Metals (ICP/MS) (Continued)

Lab Sample ID: LCS 400-653203/2-A ^5

Matrix: Water

Analysis Batch: 653473

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable

Prep Batch: 653203

Job ID: 400-247488-3

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Antimony	0.0500	0.0526		mg/L		105	80 - 120	
Arsenic	0.0500	0.0484		mg/L		97	80 - 120	
Barium	0.0500	0.0497		mg/L		99	80 - 120	
Beryllium	0.0500	0.0482		mg/L		96	80 - 120	
Cadmium	0.0500	0.0499		mg/L		100	80 - 120	
Chromium	0.0500	0.0489		mg/L		98	80 - 120	
Cobalt	0.0500	0.0495		mg/L		99	80 - 120	
Lead	0.0500	0.0503		mg/L		101	80 - 120	
Lithium	0.0500	0.0485		mg/L		97	80 - 120	
Molybdenum	0.0500	0.0498		mg/L		100	80 - 120	
Selenium	0.0500	0.0523		mg/L		105	80 - 120	
Thallium	0.0100	0.00966		mg/L		97	80 - 120	

Lab Sample ID: 680-243494-A-7-B MS ^5

Matrix: Water

Analysis Batch: 653473

Client Sample ID: Matrix Spike **Prep Type: Total Recoverable**

Prep Batch: 653203

MS MS %Rec Sample Sample Spike Qualifier Analyte Result Added Result Qualifier Unit %Rec Limits Antimony ND 50.0 54.3 109 75 - 125 ug/L 0.084 88 Boron 0.100 0.172 mg/L 75 - 125 Arsenic ND 50.0 52.2 ug/L 104 75 - 125 Calcium 24 5.00 28.2 4 mg/L 94 75 - 125 Barium 0.033 F1 50.0 81.1 F1 ug/L 162 75 - 125 ND 50.0 51.0 102 75 - 125 Beryllium ug/L Cadmium ND 50.0 51.1 ug/L 102 75 - 125 Chromium ND 50.0 51.2 ug/L 102 75 - 125 Cobalt ND 50.0 50.4 ug/L 101 75 - 125 Lead ND 50.0 51.8 ug/L 104 75 - 125 Lithium ND 50.0 51.5 ug/L 103 75 - 125 75 - 125 Molybdenum ND 50.0 47.5 ug/L 95 Selenium 50.0 ug/L 79 75 - 125 ND F2 39.5

10.0

10.3

ug/L

Lab Sample ID: 680-243494-A-7-C MSD ^5

ND

Matrix: Water

Thallium

Analysis Batch: 653473

Client Sample ID: Matrix Spike Duplicate **Prep Type: Total Recoverable**

75 - 125

Prep Batch: 653203

Allalysis Dalcii. 000470									Frep Batch		55205
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Antimony	ND		50.0	54.4		ug/L		109	75 - 125	0	20
Boron	0.084		0.100	0.196		mg/L		113	75 - 125	13	20
Arsenic	ND		50.0	47.2		ug/L		94	75 - 125	10	20
Calcium	24		5.00	29.1	4	mg/L		111	75 - 125	3	20
Barium	0.033	F1	50.0	82.4	F1	ug/L		165	75 - 125	2	20
Beryllium	ND		50.0	49.3		ug/L		99	75 - 125	3	20
Cadmium	ND		50.0	51.2		ug/L		102	75 - 125	0	20
Chromium	ND		50.0	50.4		ug/L		101	75 - 125	2	20
Cobalt	ND		50.0	50.1		ug/L		100	75 - 125	1	20
Lead	ND		50.0	52.2		ug/L		104	75 - 125	1	20
Lithium	ND		50.0	51.7		ug/L		103	75 - 125	0	20

Eurofins Pensacola

Page 31 of 39

Job ID: 400-247488-3

Project/Site: Asbury Pond - CCR Rule Appendix III & IV

Method: 6020B - Metals (ICP/MS) (Continued)

Lab Sample ID: 680-243494-A-7-C MSD ^5

Client: Midwest Environmental Consultants

Matrix: Water

Analysis Batch: 653473

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total Recoverable

Prep Batch: 653203

Prep Type: Total/NA

Prep Batch: 652452

Prep Batch: 652452

Client Sample ID: Matrix Spike

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Molybdenum	ND		50.0	49.0		ug/L		98	75 - 125	3	20
Selenium	ND	F2	50.0	51.0	F2	ug/L		102	75 - 125	25	20
Thallium	ND		10.0	10.1		ug/L		101	75 - 125	2	20
—											

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 400-652452/14-A Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 652536

MR MR

Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Analyte 0.20 12/01/23 11:33 ND 0.15 ug/L 12/01/23 07:58 Mercury

Lab Sample ID: LCS 400-652452/15-A Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Water

Analysis Batch: 652536

Spike LCS LCS

%Rec Added Result Qualifier Analyte Unit D %Rec Limits Mercury 1.00 1.00 ug/L 100 80 - 120

Lab Sample ID: 400-247488-B-1-B MS

Matrix: Water

Prep Type: Total/NA **Prep Batch: 652452** Analysis Batch: 652536 Sample Sample Spike MS MS %Rec

Result Qualifier Added Result Qualifier Limits Analyte Unit D %Rec ND F1 2.00 Mercury 2.53 F1 ug/L 127 80 - 120

Lab Sample ID: 400-247488-B-1-C MSD

Matrix: Water

Analysis Batch: 652536

Sample Sample Spike MSD MSD %Rec Result Qualifier Analyte Added Result Qualifier Unit %Rec Limits RPD Mercury ND F1 2.00 2.51 F1 ug/L 126

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 400-652922/1 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 652922

MB MB

Result Qualifier RL MDL Unit Prepared Total Dissolved Solids ND 5.0 5.0 12/04/23 23:18 mg/L

Lab Sample ID: LCS 400-652922/2

Matrix: Water

Analysis Batch: 652922

	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Total Dissolved Solids	293	280		mg/L		96	78 - 122

Eurofins Pensacola

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA **Prep Batch: 652452**

RPD Limit

80 - 120

Analyzed Dil Fac

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 400-247488-3

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond - CCR Rule Appendix III & IV

Method: SM 2540C - Solids, Total Dissolved (TDS) (Continued)

Lab Sample ID: 400-247488-10 DU

Matrix: Water

Analysis Batch: 652922

Client Sample ID: DUPLCIATE

Prep Type: Total/NA

	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Total Dissolved Solids	590		592		mg/L		0.3	5

Method: 9315 - Radium-226 (GFPC)

Lab Sample ID: MB 160-639652/1-A Client Sample ID: Method Blank

Matrix: Water Prep Type: Total/NA Analysis Batch: 643079 **Prep Batch: 639652**

Count Total MB MB Uncert. Uncert. Analyte Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$ RL MDC Unit Prepared Analyzed Dil Fac Radium-226 0.06338 U 0.106 0.106 1.00 0.187 pCi/L 12/06/23 09:19 01/05/24 09:21

MВ Carrier %Yield Qualifier Limits Prepared Analyzed Dil Fac 12/06/23 09:19 Ba Carrier 98.3 30 - 110 01/05/24 09:21

Total

Lab Sample ID: LCS 160-639652/2-A

Matrix: Water

Analysis Batch: 643079

Client Sample ID: Lab Control Sample

Prep Type: Total/NA **Prep Batch: 639652**

LCS LCS %Rec Spike Uncert. Added (2σ+/-) RL MDC Unit Limits Result Qual %Rec

Analyte Radium-226 11.3 11 32 1 34 1.00 0.215 pCi/L 100 75 - 125

LCS LCS Carrier %Yield Qualifier Limits 30 - 110 Ba Carrier 97.5

Lab Sample ID: 280-185127-D-2-A DU **Client Sample ID: Duplicate**

Matrix: Water Prep Type: Total/NA Analysis Batch: 643226 **Prep Batch: 639652**

Total Sample Sample DU DU Uncert. RER Analyte Result Qual Result Qual (2σ+/-) RL MDC Unit RER Limit

Radium-226 0.248 -0.00173 U 0.155 1.00 0.307 0.77 pCi/L 6 DU DU Qualifier Carrier %Yield Limits

Method: 9320 - Radium-228 (GFPC)

95.5

Ba Carrier

30 - 110

Count

Lab Sample ID: MB 160-639653/1-A Client Sample ID: Method Blank

Matrix: Water Prep Type: Total/NA **Prep Batch: 639653** Analysis Batch: 643034

Total

МВ MB Uncert. Uncert. Analyte Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$ RL MDC Unit Prepared Analyzed Dil Fac Radium-228 0.2469 U 0.314 0.315 12/06/23 09:25 01/04/24 12:02 1.00 0.522 pCi/L

Eurofins Pensacola

QC Sample Results

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond - CCR Rule Appendix III & IV

Job ID: 400-247488-3

Method: 9320 - Radium-228 (GFPC) (Continued)

Lab Sample ID: MB 160-639653/1-A

Matrix: Water

Analysis Batch: 643034

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 639653

	MB	MB				
Carrier	%Yield	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Ba Carrier	98.3		30 - 110	12/06/23 09:25	01/04/24 12:02	1
Y Carrier	81.9		30 - 110	12/06/23 09:25	01/04/24 12:02	1

Lab Sample ID: LCS 160-639653/2-A

Matrix: Water

Analysis Batch: 643034

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 639653

		Total						
LCS	LCS	Uncert.					%Rec	
Result	Qual	(2σ+/-)	RL	MDC	Unit	%Rec	Limits	
8.855		1.21	1.00	0.515	pCi/L	95	75 - 125	
-	Result	LCS LCS Result Qual 8.855	Result Qual (2σ+/-)	Result Qual (2σ+/-) RL	Result Qual (2σ+/-) RL MDC	Result Qual (2σ+/-) RL MDC Unit	Result Qual (2σ+/-) RL MDC Unit %Rec	Result Qual (2σ+/-) RL MDC Unit %Rec Limits

 LCS
 LCS

 Carrier
 % Yield
 Qualifier
 Limits

 Ba Carrier
 97.5
 30 - 110

 Y Carrier
 84.5
 30 - 110

Lab Sample ID: 280-185127-D-2-B DU

Matrix: Water

Analysis Batch: 643034

Client Sample ID: Duplicate

Prep Type: Total/NA

Prep Batch: 639653

					Total					
	Sample	Sample	DU	DU	Uncert.					RER
Analyte	Result	Qual	Result	Qual	(2σ+/-)	RL	MDC	Unit	RER	Limit
Radium-228	1.34		1.020		0.432	1.00	0.545	pCi/L	 0.35	1

 Carrier
 %Yield Pack
 Qualifier
 Limits

 Ba Carrier
 95.5
 30 - 110

 Y Carrier
 75.5
 30 - 110

3

4

5

7

9

10

14

1 A

ì

Eurofins Pensacola				20000			
3355 McLemore Drive Pensacola, FL 32514	Chain of	Chain of Custody Record	cord	T.	***	🕏 eurofins	Environment T
	-			Ħ			
Client Information	Sampler Rick Elain	Lab PM Whitm	: ire, Cheyenne R	7488 COC	king No(s):	COC No: 400-124667-42675.	5.1
Client Contact: Anika Careaga	-636	E-Mail: Cheye	E-Mail: Cheyenne.Whitmire@et.eurofinsus.com	finsus.com	On	Page: Page 1 of 1	
Company: Midwest Environmental Consultants	PWSID:		¥	Analysis Requested		Эор #:	
Address: 2009 East McCarty Street Suite 2	Due Date Requested:					8	s: M - Hexane
City: Jefferson City	TAT Requested (days):					A - HCL B - NaOH C - Zn Acetate	N - None O - AsNaO2
State, Zip: MO, 65101	Compliance Project: △ Yes △ No						2 - Na2O45 2 - Na2SO3 3 - Na2S2O3
Phone: 573-636-9454(Tel)	PO#: Purchase Order not required				4 3.1		S - H2SO4 F - TSP Dodecahy
Email: acareaga@mecpc.com			t List t List	(XOT)			J - Acetone / - MCAA // - pH 4-5
Project Name: Asbury Pond - NPDES	Project #: 40011105		1 Targe 1 Targe		nədistı	K - EDTA L - EDA	Y - Trizma Z - other (specify)
Site:	SSOW#;		andarc andarc Field p	sle	and the second second second	Other:	
	Sample	Sample Matrix Type (W=water, processorid, processorid)	2 benedid the red (2 mm)	06 - Mercury 06 - TAL Met 06 - Total On	equiny le	1 Hd	your hond.
Sample Identification	V 1986	BT=Tissue, A=Air) ation Code:	26	747 C	101	Special Ins	Special Instructions/Note
D MW-2	OK! FR-88-11	G Water	× × ×	X		MALLANA	SAN
ww 35 o	_	Water				5.77	1.134
# 300 MW-4	33	Water				6.65	1.72
MW-5	02:01 68.95.11	Water				91'2	0,350
MW-5A	54:43 64:45	Water				6.59	3,43
MW-5AR	71:01 82-98-11	Water				16.7	1,23
MW-6	11-39-33 9:05	Water				629	2,09
MW-6A	11-38-37 7:70	Water				1 66.9	1818
MW-7	11-38-37 3:50	Water				819	2.461
DUPLICATE	11-29-23 11:05	Water				-	١
FIELD BLANK	71:11-29-25 11:115	Water		J. F. F. F. F.		1)
Identification			Sample Disposal (A	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month,	amples are retaine	ed longer than 1 n	ionth)
Deliverable Requested: I, III, IV, Other (specify)	Folson B Unknown Kad	Kadiological	Special Instructions/C	Return To Client Uisposal By Lab Special Instructions/QC Requirements:		Arcnive For	Months
Empty Kit Relinquished by:	Date:		I Time:	Method o	Method of Shipment:		
Relinquished by: Other 15	Date/Time: 11-34-23 / 3:45	Company	Received by:		Date/Time:	13:45	Company Fr
Relinquished by:	Date/Time: /	Сотрапу	Received by:	de la	Date/Time: 1,20.13	9:28	Company
Relinquished by:	Date/Time:	Company	Received by:		4		Company
Custody Seals Intact: Custody Seal No.:			Cooler Temperature(s	Cooler Temperature(s) °C and Other Remarks: 3.8	57	0.050%	
J							1000/30/3031

Login Sample Receipt Checklist

Client: Midwest Environmental Consultants

Job Number: 400-247488-3

Login Number: 247488 List Source: Eurofins Pensacola

List Number: 1

Creator: Roberts, Alexis J

Creator. Roberts, Alexis J		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	0.0°C, 3.8°C, 5.7°C IR8
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

3

1

5

7

0

10

12

13

14

Login Sample Receipt Checklist

Client: Midwest Environmental Consultants

Job Number: 400-247488-3

List Source: Eurofins St. Louis
List Number: 3
List Creation: 12/05/23 01:01 PM

Creator: Pinette, Meadow L

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

3

4

6

8

10

10

13

14

Accreditation/Certification Summary

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond - CCR Rule Appendix III & IV

Laboratory: Eurofins Pensacola

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Alabama	State	40150	06-30-24
ANAB	ISO/IEC 17025	L2471	02-22-26
Arkansas DEQ	State	88-00689	08-01-24
California	State	2510	06-30-24
Florida	NELAP	E81010	06-30-24
Georgia	State	E81010(FL)	06-30-24
Illinois	NELAP	200041	10-09-24
Kansas	NELAP	E-10253	10-31-24
Kentucky (UST)	State	53	06-30-24
Louisiana (All)	NELAP	30976	06-30-24
Louisiana (DW)	State	LA017	12-31-23
North Carolina (WW/SW)	State	314	12-31-23
Oklahoma	NELAP	9810	08-31-24
Pennsylvania	NELAP	68-00467	01-31-24
South Carolina	State	96026	06-30-24
Tennessee	State	TN02907	06-30-24
Texas	NELAP	T104704286	09-30-24
US Fish & Wildlife	US Federal Programs	A22340	06-30-24
USDA	US Federal Programs	FLGNV23001	01-08-26
USDA	US Federal Programs	P330-21-00056	05-17-24
Virginia	NELAP	460166	06-14-24
West Virginia DEP	State	136	03-31-24
West Virginia DEP	State	136	03-31-24

Laboratory: Eurofins St. Louis

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Alaska (UST)	State	20-001	05-06-25
ANAB	Dept. of Defense ELAP	L2305	04-06-25
ANAB	Dept. of Energy	L2305.01	04-06-25
ANAB	ISO/IEC 17025	L2305	04-06-25
Arizona	State	AZ0813	12-08-24
California	Los Angeles County Sanitation Districts	10259	06-30-22 *
California	State	2886	06-30-24
Connecticut	State	PH-0241	03-31-25
Florida	NELAP	E87689	06-30-24
HI - RadChem Recognition	State	n/a	06-30-24
Illinois	NELAP	200023	11-30-24
Iowa	State	373	12-01-24
Kansas	NELAP	E-10236	10-31-24
Kentucky (DW)	State	KY90125	12-31-24
Kentucky (WW)	State	KY90125 (Permit KY0004049)	12-31-24
Louisiana	NELAP	04080	06-30-22 *
Louisiana (All)	NELAP	04080	06-30-24
Louisiana (DW)	State	LA011	12-31-24
Maryland	State	310	09-30-24
Massachusetts	State	M-MO054	06-30-24
MI - RadChem Recognition	State	9005	06-30-24

 $^{{}^{\}star}\operatorname{Accreditation/Certification\ renewal\ pending\ -\ accreditation/certification\ considered\ valid}.$

Job ID: 400-247488-3

Accreditation/Certification Summary

Client: Midwest Environmental Consultants

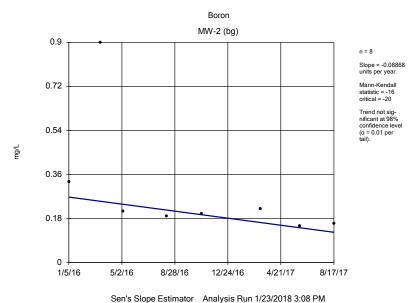
Project/Site: Asbury Pond - CCR Rule Appendix III & IV

Job ID: 400-247488-3

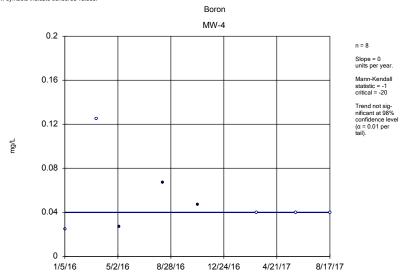
Laboratory: Eurofins St. Louis (Continued)

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

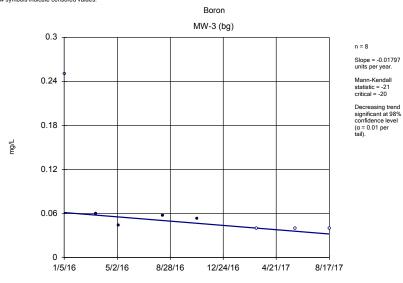
Authority	Program	Identification Number	Expiration Date
Missouri	State	780	06-30-25
Nevada	State	MO00054	07-31-24
New Jersey	NELAP	MO002	06-30-24
New Mexico	State	MO00054	06-30-24
New York	NELAP	11616	03-31-24
North Carolina (DW)	State	29700	07-31-24
North Dakota	State	R-207	06-30-24
Oklahoma	NELAP	9997	08-31-24
Oregon	NELAP	4157	09-01-24
Pennsylvania	NELAP	68-00540	02-28-24
South Carolina	State	85002001	06-30-24
Texas	NELAP	T104704193	07-31-24
US Fish & Wildlife	US Federal Programs	058448	07-31-24
USDA	US Federal Programs	P330-17-00028	05-18-26
Utah	NELAP	MO00054	07-31-24
Virginia	NELAP	10310	06-15-25
Washington	State	C592	08-30-24
West Virginia DEP	State	381	01-31-24


APPENDIX 5

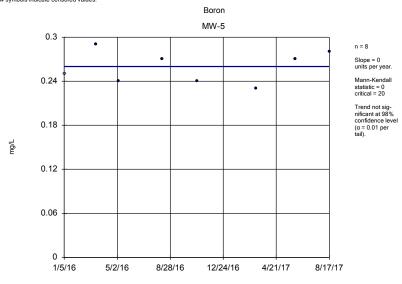
Statistical Analysis


Sanitas[™] Output – Background

Trending Analysis

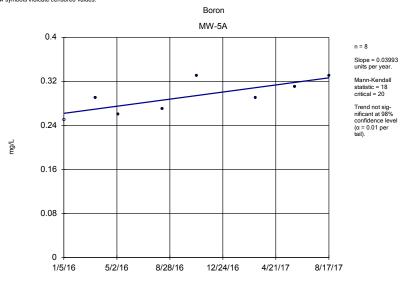

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM


Sanitas $^{\text{™}}$ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

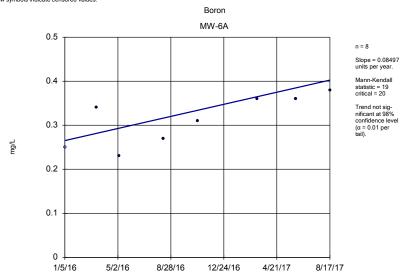
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

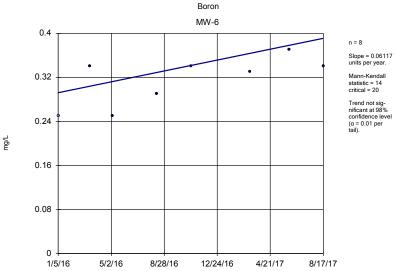

Sanitas $^{\text{IM}}$ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

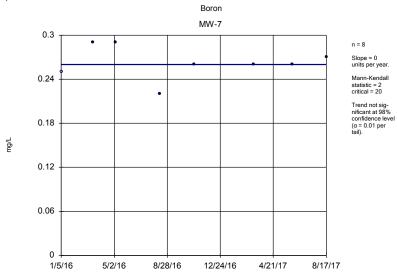
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM


The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

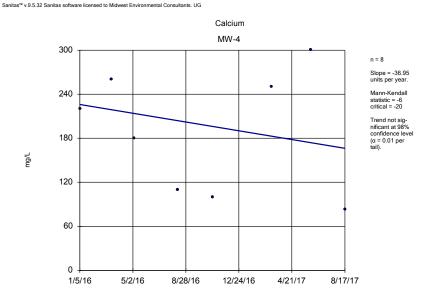
Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM


 $Sanitas \ ^{w}v.9.5.32\ Sanitas\ software\ licensed\ to\ Midwest\ Environmental\ Consultants.\ UG\ Hollow\ symbols\ indicate\ censored\ values.$

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

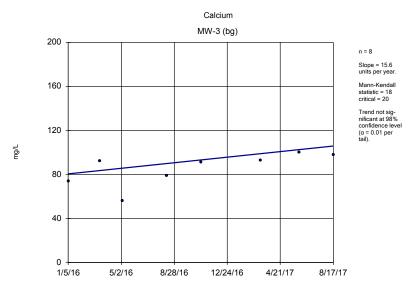
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

Sanitas $^{\text{™}}$ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

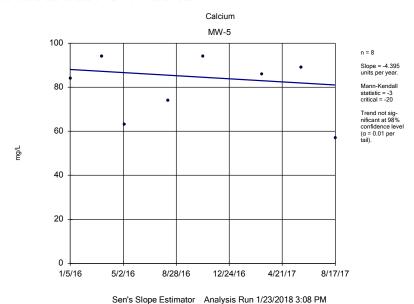


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

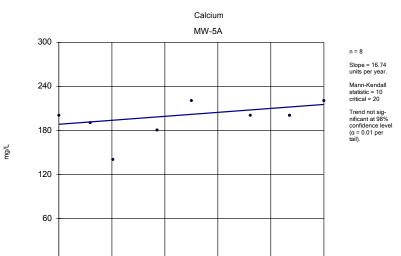
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3



The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3



Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

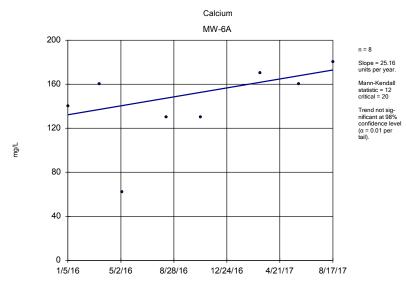
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

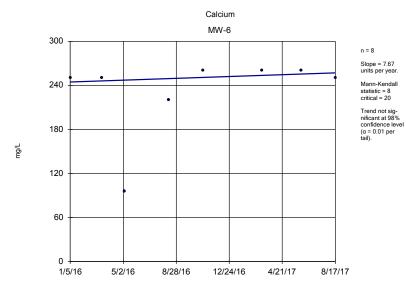
8/28/16

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

12/24/16

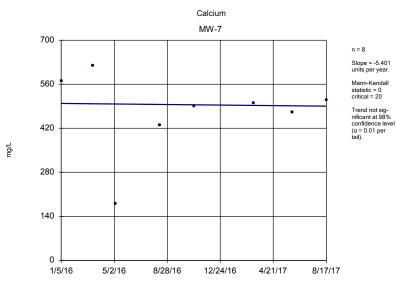

4/21/17

8/17/17

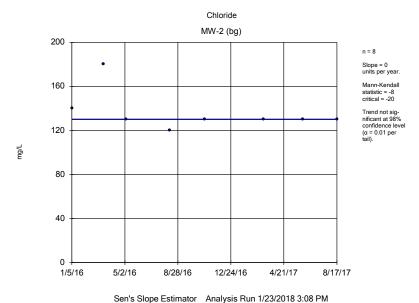

1/5/16

5/2/16

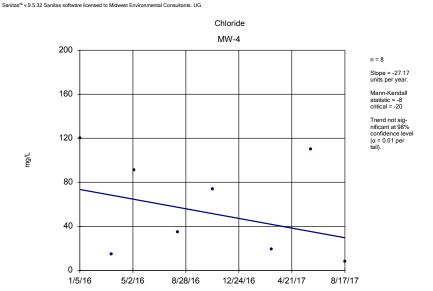
Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM


Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

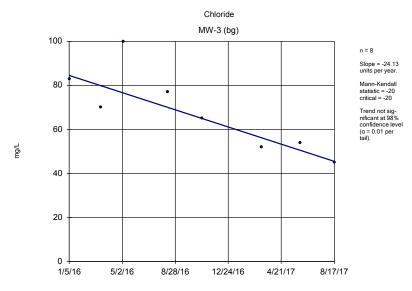

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG

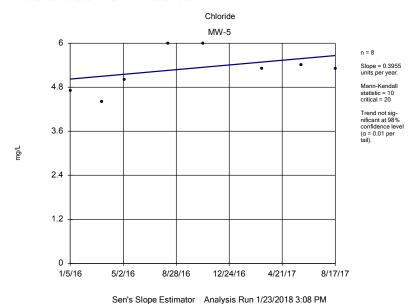


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

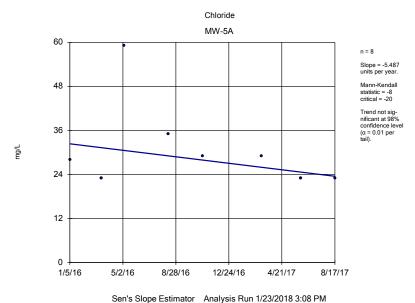
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3



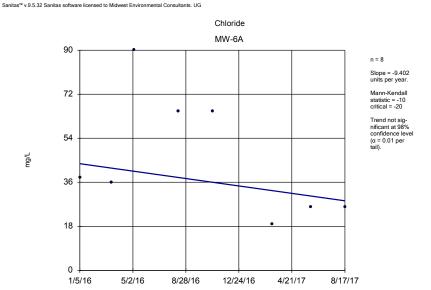
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

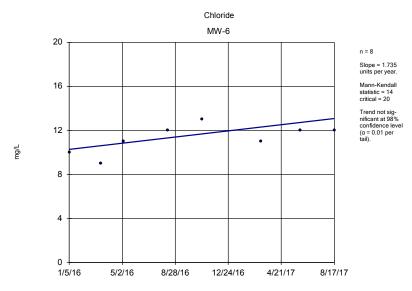
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3



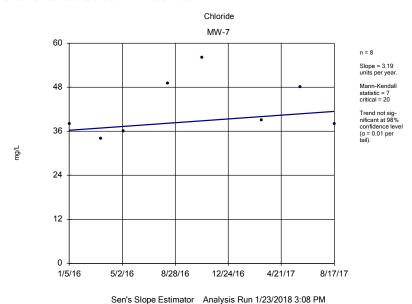
Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM


The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

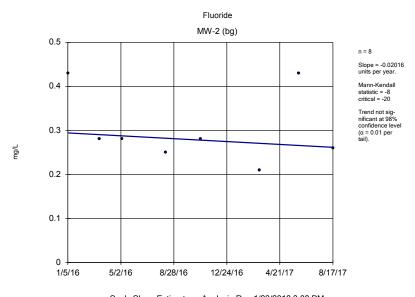
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3



The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

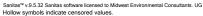

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

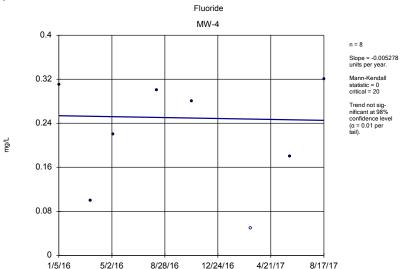
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

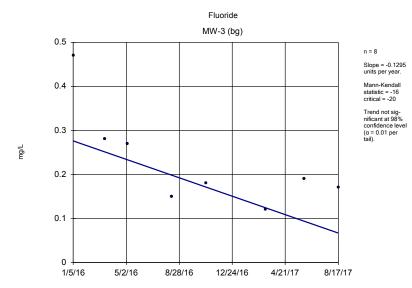


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

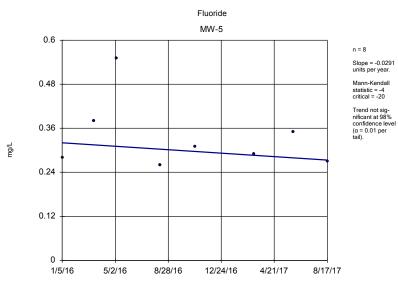
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3



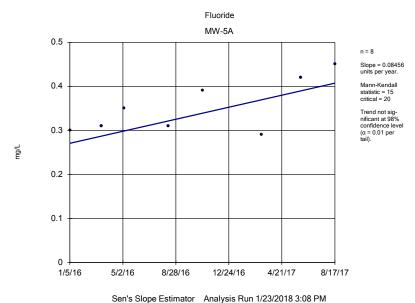

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

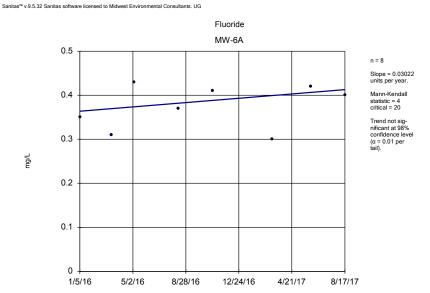
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

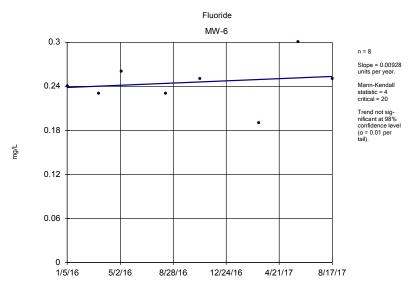

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG



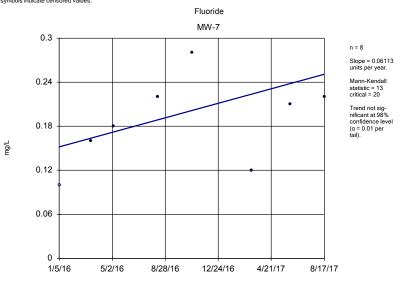
Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

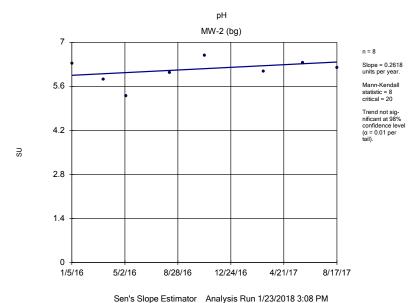


The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

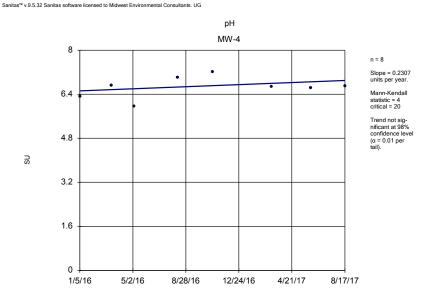
Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM


The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

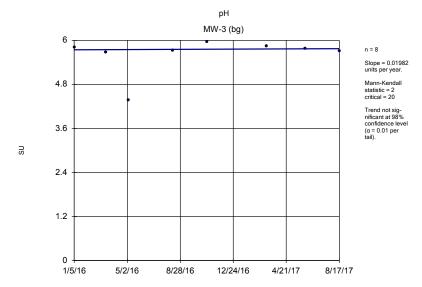

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

Sanitas $^{\text{\tiny{IM}}}$ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

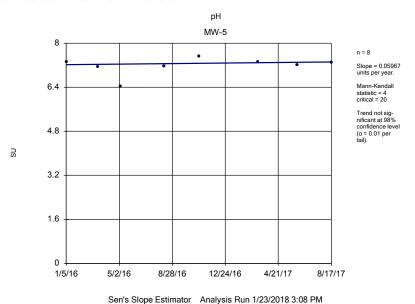


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

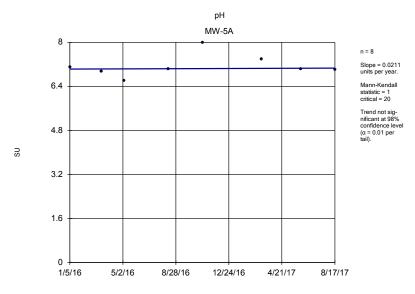
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3



The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

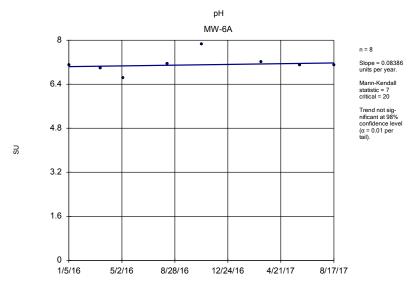

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

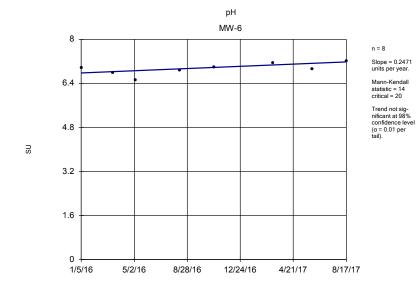
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3



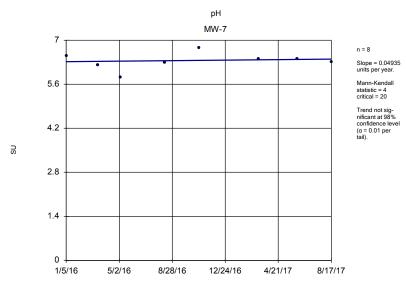
Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

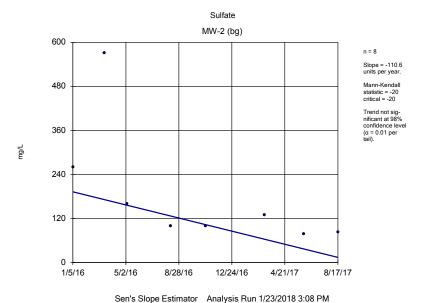

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

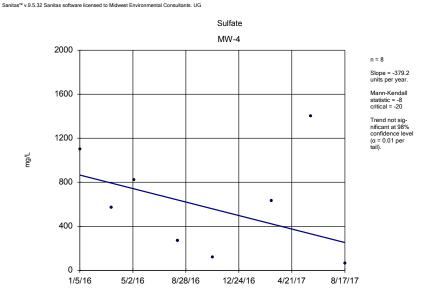
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

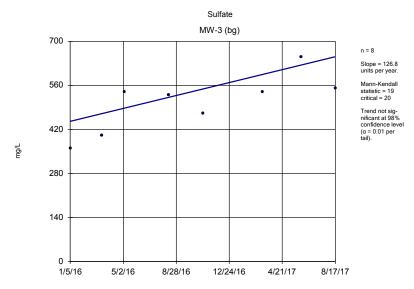

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG

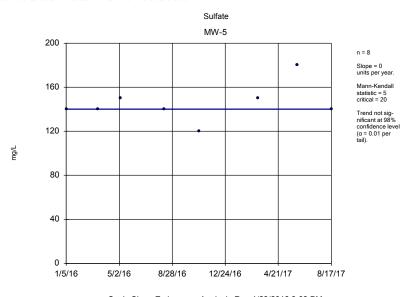


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

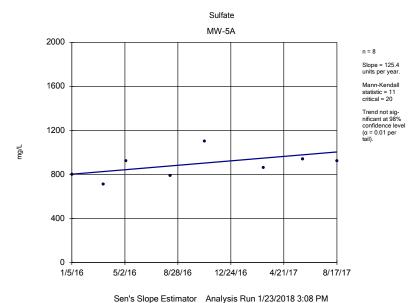
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3



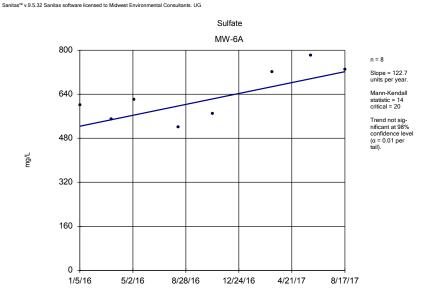
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3



Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

2000

1600

1200

1200

1200

800

400

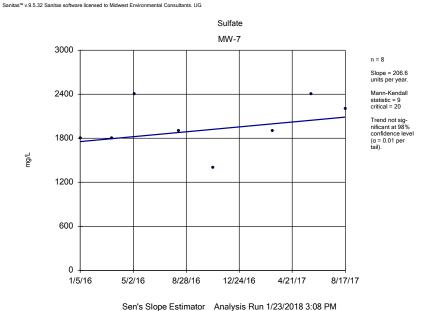
8/28/16

Sulfate

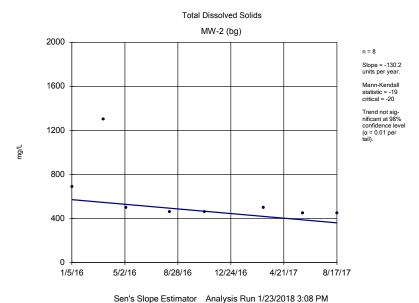
MW-6

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

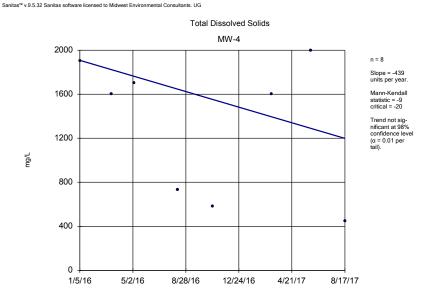
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


12/24/16

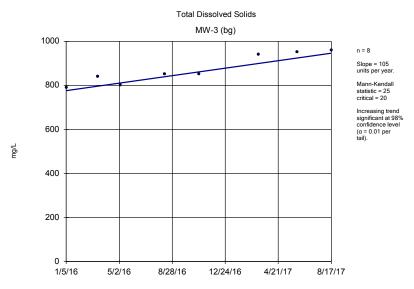
4/21/17


8/17/17

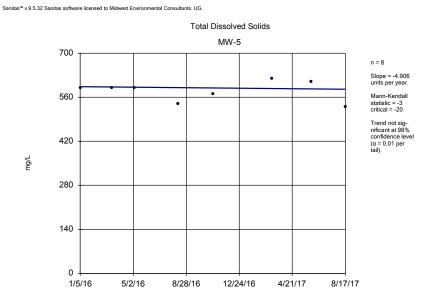
1/5/16


5/2/16

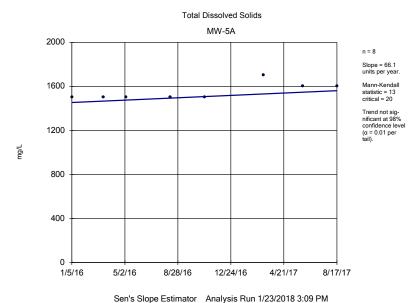
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3



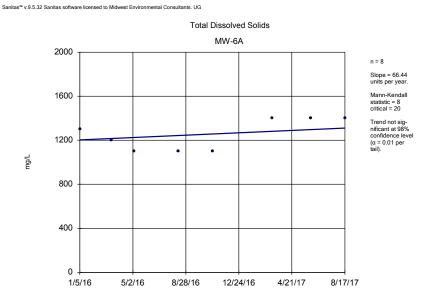
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

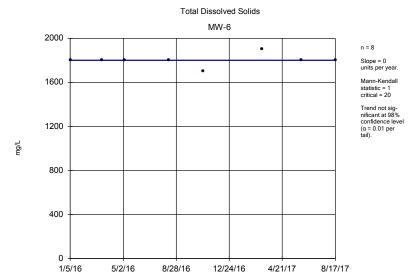

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

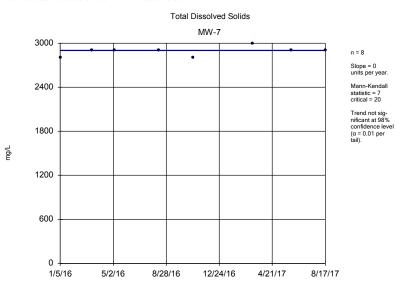


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3



The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

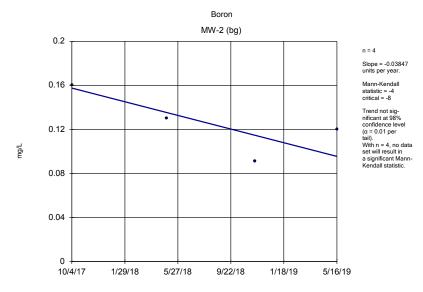

Sen's Slope Estimator Analysis Run 1/23/2018 3:09 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

Sen's Slope Estimator Analysis Run 1/23/2018 3:09 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

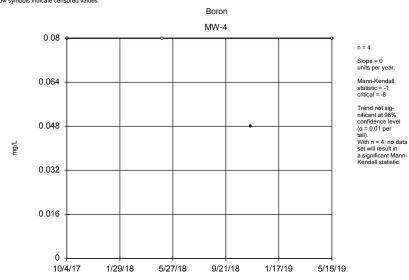
Sen's Slope Estimator Analysis Run 1/23/2018 3:09 PM


The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

Trend Test

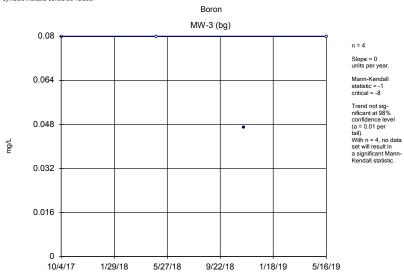
The	e Empire District	Client: Midwest Envi	ronmental Consu	ıltants	Data: Asbury CCR I	mpoundmer	nts GW Ba	aseline Datab	pase - App 3 only	/ Printed 1/2	23/2018, 3:10 PI	М
Constituent		<u>Well</u>	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Boron (mg/L)		MW-2 (bg)	-0.08868	-16	-20	No	8	0	n/a	n/a	0.02	NP
Boron (mg/L)		MW-3 (bg)	-0.01797	-21	-20	Yes	8	50	n/a	n/a	0.02	NP
Boron (mg/L)		MW-4	0	-1	-20	No	8	62.5	n/a	n/a	0.02	NP
Boron (mg/L)		MW-5	0	0	20	No	8	12.5	n/a	n/a	0.02	NP
Boron (mg/L)		MW-5A	0.03993	18	20	No	8	12.5	n/a	n/a	0.02	NP
Boron (mg/L)		MW-6	0.06117	14	20	No	8	12.5	n/a	n/a	0.02	NP
Boron (mg/L)		MW-6A	0.08497	19	20	No	8	12.5	n/a	n/a	0.02	NP
Boron (mg/L)		MW-7	0	2	20	No	8	12.5	n/a	n/a	0.02	NP
Calcium (mg/L)		MW-2 (bg)	-0.8333	-2	-20	No	8	0	n/a	n/a	0.02	NP
Calcium (mg/L)		MW-3 (bg)	15.6	18	20	No	8	0	n/a	n/a	0.02	NP
Calcium (mg/L)		MW-4	-36.95	-6	-20	No	8	0	n/a	n/a	0.02	NP
Calcium (mg/L)		MW-5	-4.395	-3	-20	No	8	0	n/a	n/a	0.02	NP
Calcium (mg/L)		MW-5A	16.74	10	20	No	8	0	n/a	n/a	0.02	NP
Calcium (mg/L)		MW-6	7.67	8	20	No	8	0	n/a	n/a	0.02	NP
Calcium (mg/L)		MW-6A	25.16	12	20	No	8	0	n/a	n/a	0.02	NP
Calcium (mg/L)		MW-7	-5.401	0	20	No	8	0	n/a	n/a	0.02	NP
Chloride (mg/L)		MW-2 (bg)	0	-8	-20	No	8	0	n/a	n/a	0.02	NP
Chloride (mg/L)		MW-3 (bg)	-24.13	-20	-20	No	8	0	n/a	n/a	0.02	NP
Chloride (mg/L)		MW-4	-27.17	-8	-20	No	8	0	n/a	n/a	0.02	NP
Chloride (mg/L)		MW-5	0.3955	10	20	No	8	0	n/a	n/a	0.02	NP
Chloride (mg/L)		MW-5A	-5.487	-8	-20	No	8	0	n/a	n/a	0.02	NP
Chloride (mg/L)		MW-6	1.735	14	20	No	8	0	n/a	n/a	0.02	NP
Chloride (mg/L)		MW-6A	-9.402	-10	-20	No	8	0	n/a	n/a	0.02	NP
Chloride (mg/L)		MW-7	3.19	7	20	No	8	0	n/a	n/a	0.02	NP
Fluoride (mg/L)		MW-2 (bg)	-0.02016	-8	-20	No	8	0	n/a	n/a	0.02	NP
Fluoride (mg/L)		MW-3 (bg)	-0.1295	-16	-20	No	8	0	n/a	n/a	0.02	NP
Fluoride (mg/L)		MW-4	-0.00	0	20	No	8	12.5	n/a	n/a	0.02	NP
Fluoride (mg/L)		MW-5	-0.0291	-4	-20	No	8	0	n/a	n/a	0.02	NP
Fluoride (mg/L)		MW-5A	0.08456	15	20	No	8	0	n/a	n/a	0.02	NP
Fluoride (mg/L)		MW-6	0.00928	4	20	No	8	0	n/a	n/a	0.02	NP
Fluoride (mg/L)		MW-6A	0.03022	4	20	No	8	0	n/a	n/a	0.02	NP
Fluoride (mg/L)		MW-7	0.06113	13	20	No	8	12.5	n/a	n/a	0.02	NP
pH (SU)		MW-2 (bg)	0.2618	8	20	No	8	0	n/a	n/a	0.02	NP
pH (SU)		MW-3 (bg)	0.01982	2	20	No	8	0	n/a	n/a	0.02	NP
pH (SU)		MW-4	0.2307	4	20	No	8	0	n/a	n/a	0.02	NP
pH (SU)		MW-5	0.05967	4	20	No	8	0	n/a	n/a	0.02	NP
pH (SU)		MW-5A	0.0211	1	20	No	8	0	n/a	n/a	0.02	NP
pH (SU)		MW-6	0.2471	14	20	No	8	0	n/a	n/a	0.02	NP
pH (SU)		MW-6A	0.08386	7	20	No	8	0	n/a	n/a	0.02	NP
pH (SU)		MW-7	0.04935	4	20	No	8	0	n/a	n/a	0.02	NP
Sulfate (mg/L)		MW-2 (bg)	-110.6	-20	-20	No	8	0	n/a	n/a	0.02	NP
Sulfate (mg/L)		MW-3 (bg)	126.8	19	20	No	8	0	n/a	n/a	0.02	NP
Sulfate (mg/L)		MW-4	-379.2	-8	-20	No	8	0	n/a	n/a	0.02	NP
Sulfate (mg/L)		MW-5	0	5	20	No	8	0	n/a	n/a	0.02	NP
Sulfate (mg/L)		MW-5A	125.4	11	20	No	8	0	n/a	n/a	0.02	NP
Sulfate (mg/L)		MW-6	46.31	6	20	No	8	0	n/a ,	n/a	0.02	NP
Sulfate (mg/L)		MW-6A	122.7	14	20	No	8	0	n/a ,	n/a	0.02	NP
Sulfate (mg/L)		MW-7	206.6	9	20	No	8	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)		MW-2 (bg)	-130.2	-19	-20	No	8	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)		MW-3 (bg)	105	25	20	Yes	8	0	n/a	n/a	0.02	NP


Trend Test

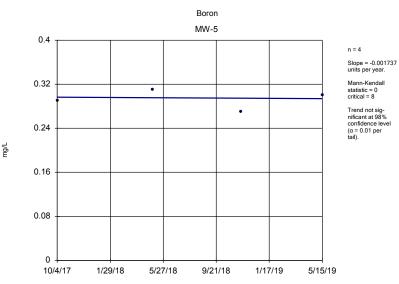

	The Empire District	Client: Midwest Er	vironmental Cons	ultants	Data: Asbury CCR Im	poundmer	nts GW E	Baseline Datab	ase - App 3 only	Printed 1	/23/2018, 3:10 PM	
Constituent		<u>Well</u>	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Total Dissolved Solids (mg/L)		MW-4	-439	-9	-20	No	8	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)		MW-5	-4.906	-3	-20	No	8	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)		MW-5A	66.1	13	20	No	8	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)		MW-6	0	1	20	No	8	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)		MW-6A	66.44	8	20	No	8	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)		MW-7	0	7	20	No	8	0	n/a	n/a	0.02	NP

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

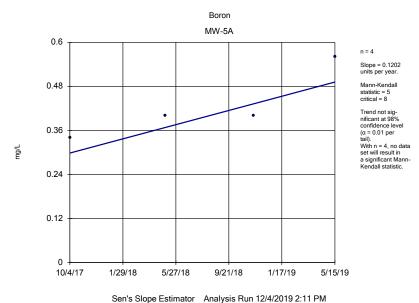
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background



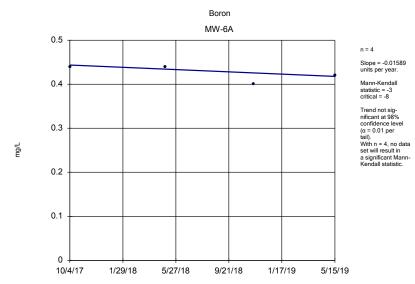
Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM


The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

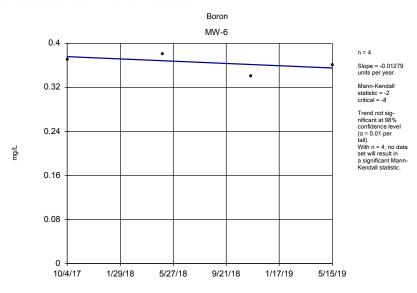
Sanitas $^{\text{™}}$ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

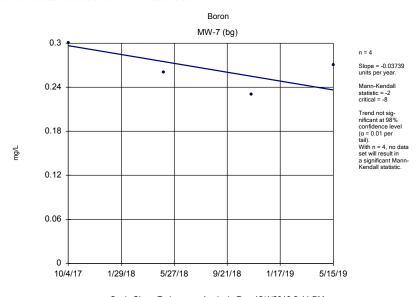

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

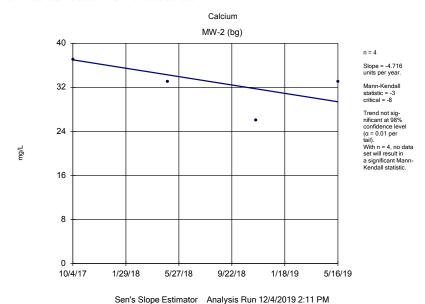

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

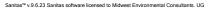

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

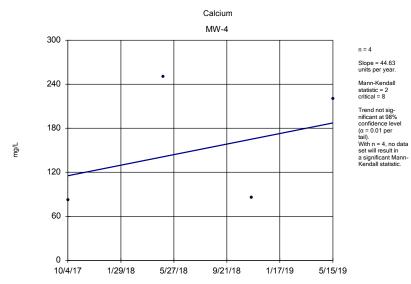

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

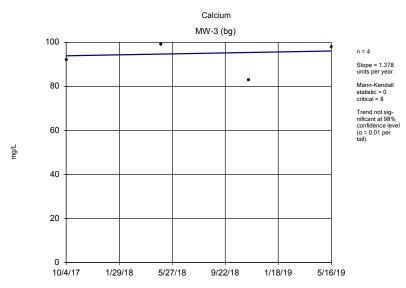

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

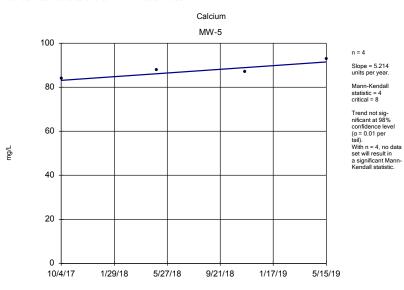
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background




Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

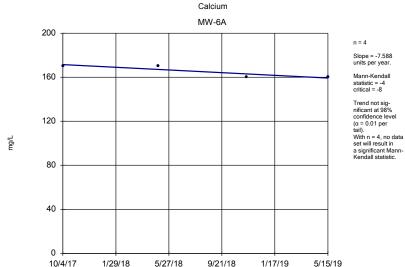

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

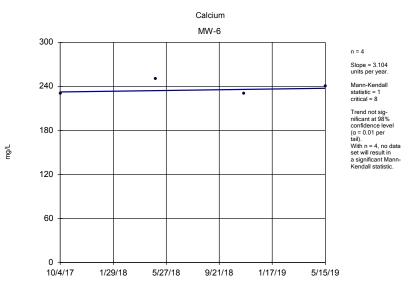
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

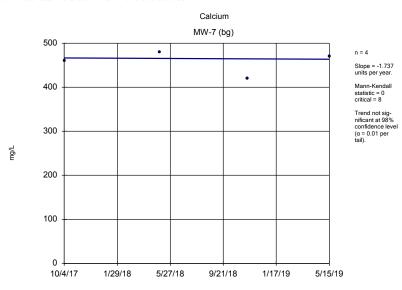

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

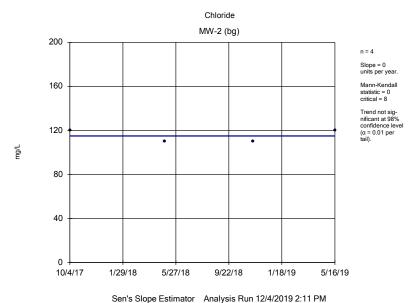

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

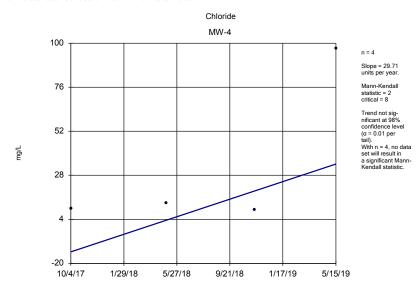

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

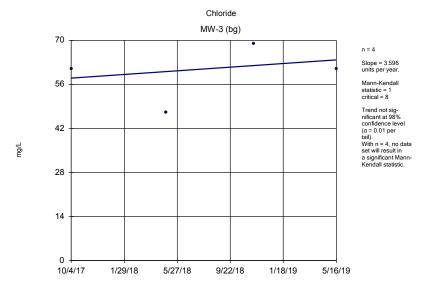
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

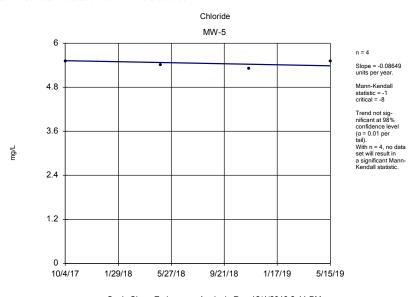

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

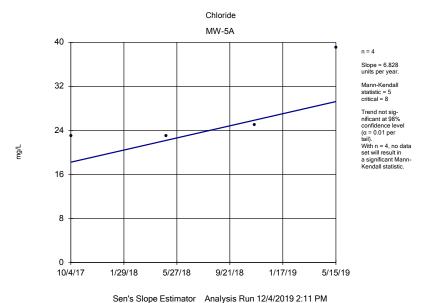

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

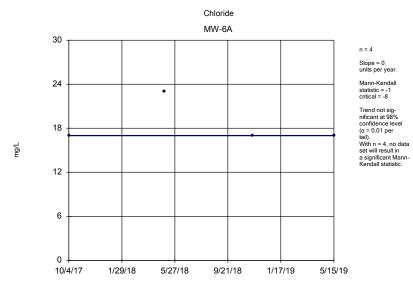

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

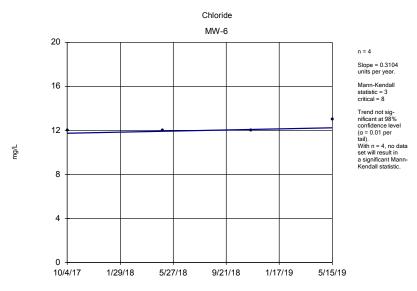
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

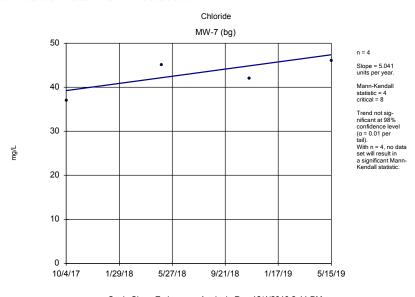

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

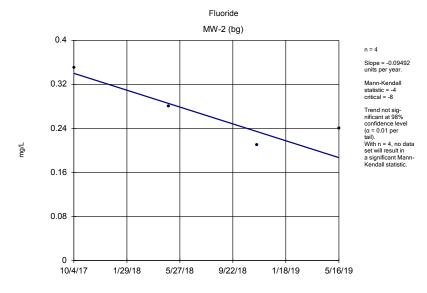

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background


The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

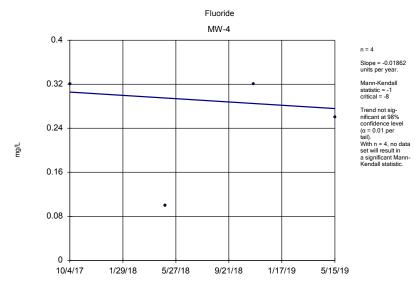

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

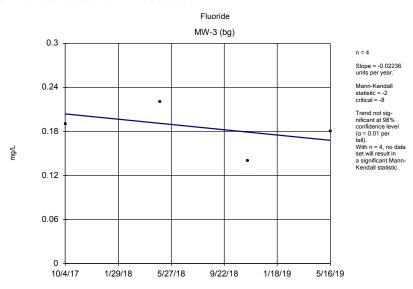

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

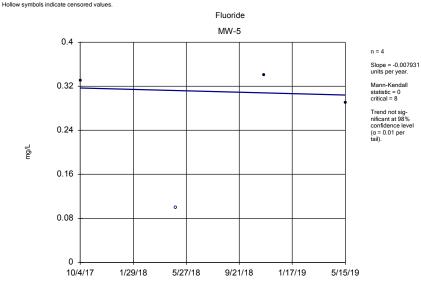
Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM


The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

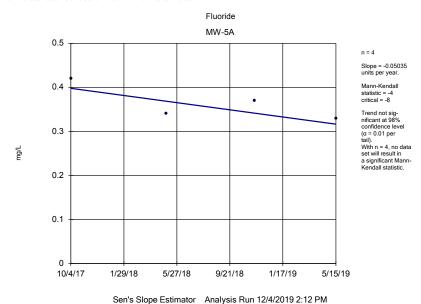
Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM


The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

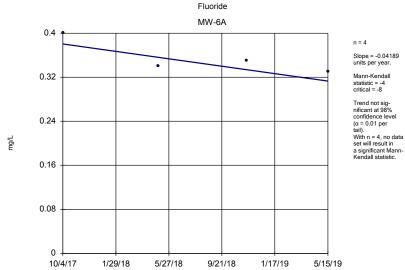
Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG


Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background



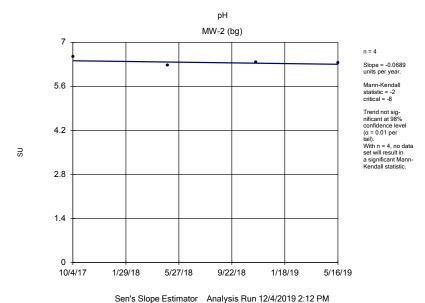
Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

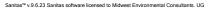
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

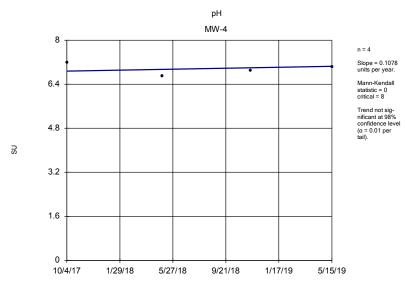

Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

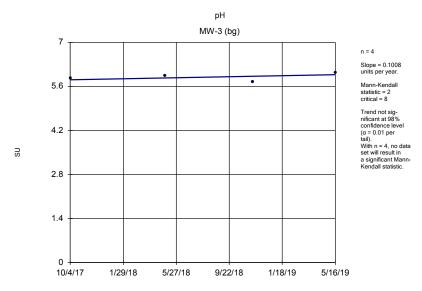

Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

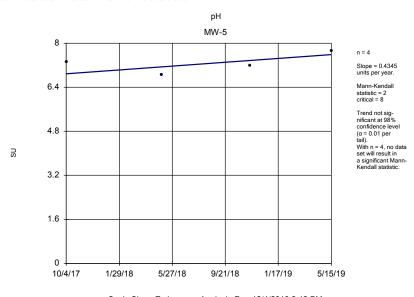
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background



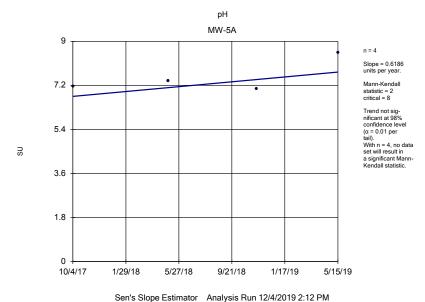

Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

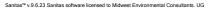

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

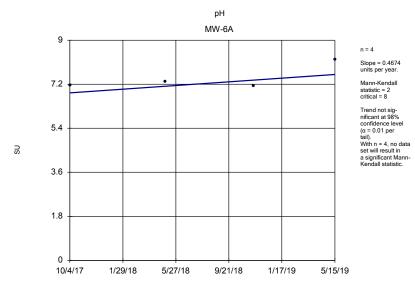

Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

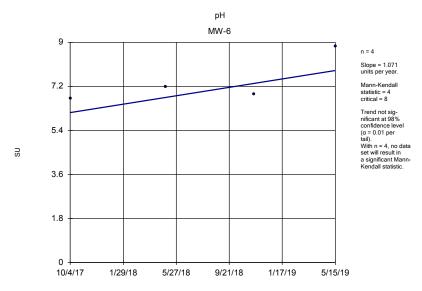

Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

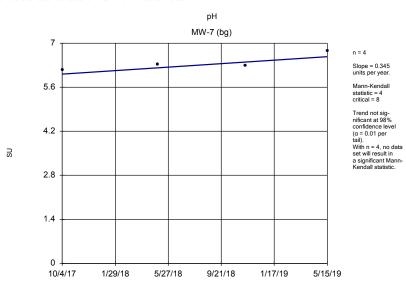
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background



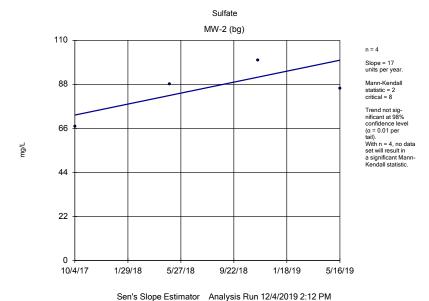

Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

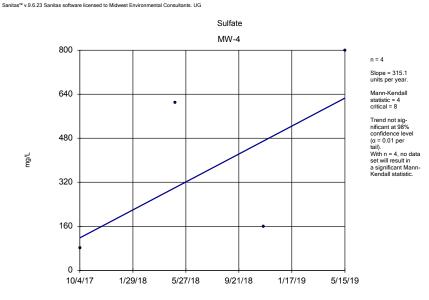

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

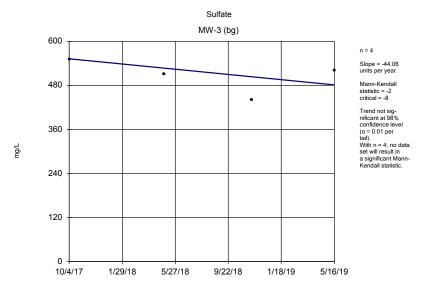
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

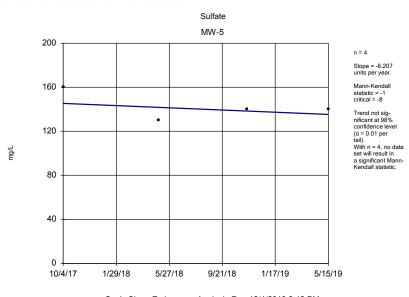

Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

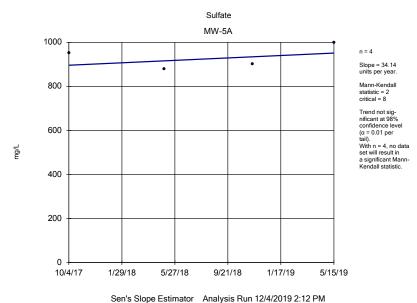

Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

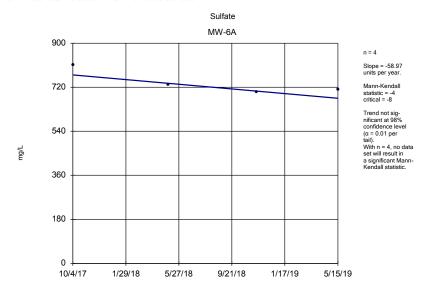

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

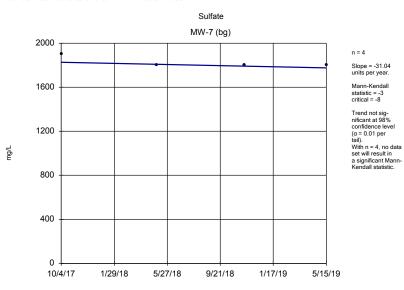

Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

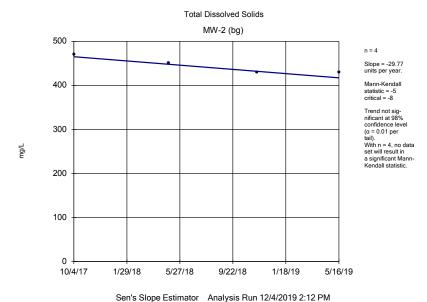

Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

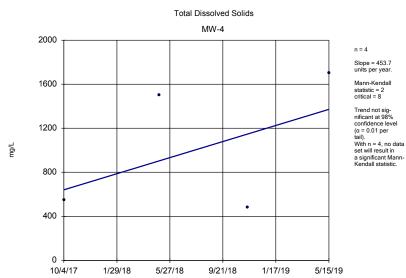
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

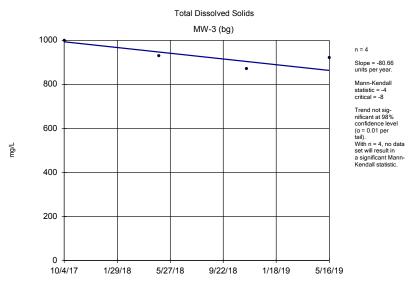

Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

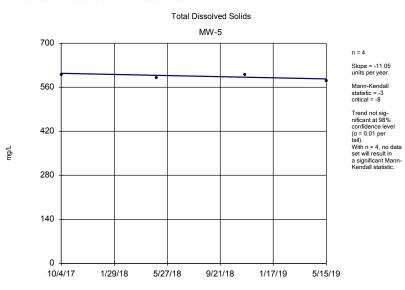


Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

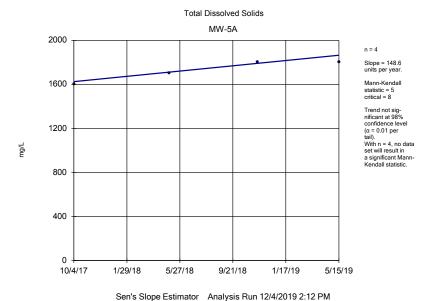
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background



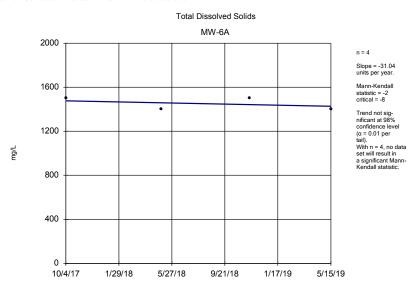
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

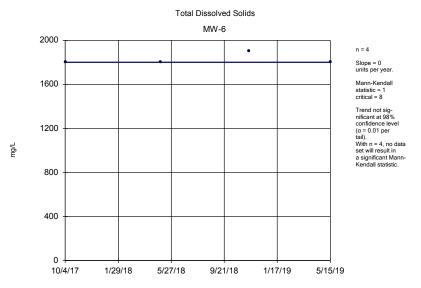
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

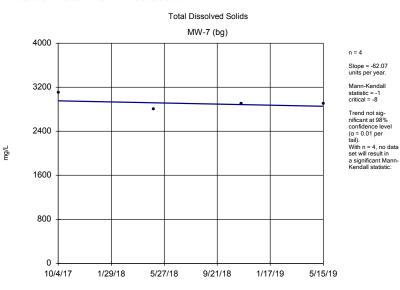

Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background


The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

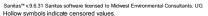
Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

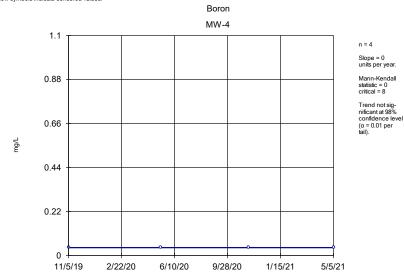
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

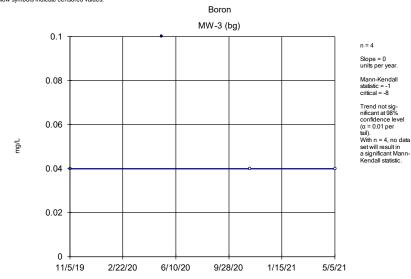
	The Empire District Client: Mic	lwest Environme	ental Consultants	Data: 11-	19 App 3 As	bury pond	s with backg	round Printe	ed 12/4/2019, 2:	13 PM	
Constituent	Well	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Boron (mg/L)	MW-2 (bg)	-0.03847	-4	-8	No	4	0	n/a	n/a	0.02	NP
Boron (mg/L)	MW-3 (bg)	0	-1	-8	No	4	75	n/a	n/a	0.02	NP
Boron (mg/L)	MW-4	0	-1	-8	No	4	75	n/a	n/a	0.02	NP
Boron (mg/L)	MW-5	-0.00	0	8	No	4	0	n/a	n/a	0.02	NP
Boron (mg/L)	MW-5A	0.1202	5	8	No	4	0	n/a	n/a	0.02	NP
Boron (mg/L)	MW-6	-0.01279	-2	-8	No	4	0	n/a	n/a	0.02	NP
Boron (mg/L)	MW-6A	-0.01589	-3	-8	No	4	0	n/a	n/a	0.02	NP
Boron (mg/L)	MW-7 (bg)	-0.03739	-2	-8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-2 (bg)	-4.716	-3	-8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-3 (bg)	1.378	0	8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-4	44.63	2	8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-5	5.214	4	8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-5A	14.15	4	8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-6	3.104	1	8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-6A	-7.588	-4	-8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-7 (bg)	-1.737	0	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-2 (bg)	0	0	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-3 (bg)	3.596	1	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-4	29.71	2	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-5	-0.08649	- -1	-8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-5A	6.828	5	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-6	0.3104	3	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-6A	0	-1	-8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-7 (bg)	5.041	4	8	No	4	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-2 (bg)	-0.09492	-4	-8	No	4	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-3 (bg)	-0.02236	-2	-8	No	4	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-4	-0.01862	-1	-8	No	4	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-5	-0.00	0	8	No	4	25	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-5A	-0.05035	-4	-8	No	4	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-6	-0.03966	-3	-8	No	4	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-6A	-0.04189	-4	-8	No	4	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-7 (bg)	-0.01557	-2	-8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-2 (bg)	-0.0689	-2	-8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-3 (bg)	0.1008	2	8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-4	0.1078	0	8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-5	0.4345	2	8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-5A	0.6186	2	8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-6	1.071	4	8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-6A	0.4674	2	8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-7 (bg)	0.345	4	8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-2 (bg)	17	2	8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-3 (bg)	-44.06	-2	-8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-4	315.1	4	8		4	0			0.02	NP
					No			n/a	n/a		NP
Sulfate (mg/L)	MW-5	-6.207 34.14	-1 2	-8 8	No No	4 4	0 0	n/a	n/a	0.02	NP NP
Sulfate (mg/L)	MW-5A	34.14	2		No			n/a	n/a	0.02	
Sulfate (mg/L)	MW-6	-8.649	-1	-8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-6A	-58.97	-4	-8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-7 (bg)	-31.04	-3	-8	No	4	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-2 (bg)	-29.77	-5	-8	No	4	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-3 (bg)	-80.66	-4	-8	No	4	0	n/a	n/a	0.02	NP


Trend Test


	The Empire District Client: Mi	dwest Environm	ental Consultants	Data: 11-19 App 3 Asbury ponds with background Printed 12/4/2019, 2:13 PM							
Constituent	Well	<u>Slope</u>	Calc.	<u>Critical</u>	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Total Dissolved Solids (mg/L)	MW-4	453.7	2	8	No	4	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-5	-11.05	-3	-8	No	4	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-5A	148.6	5	8	No	4	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-6	0	1	8	No	4	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-6A	-31.04	-2	-8	No	4	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-7 (bg)	-62.07	-1	-8	No	4	0	n/a	n/a	0.02	NP

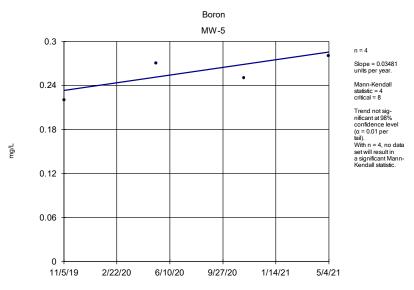
Sen's Slope Estimator Analysis Run 11/18/2021 4:27 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

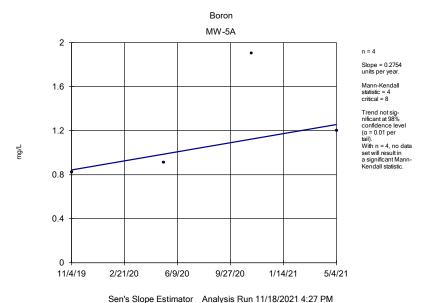


Sen's Slope Estimator Analysis Run 11/18/2021 4:27 PM

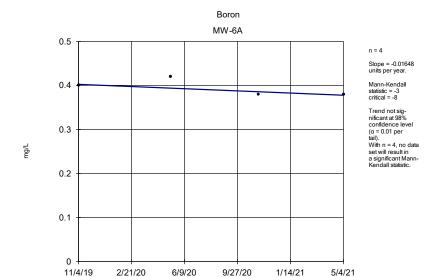
The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background


Sanitas™ v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

Sen's Slope Estimator Analysis Run 11/18/2021 4:27 PM


The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

Sanitas™ v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG

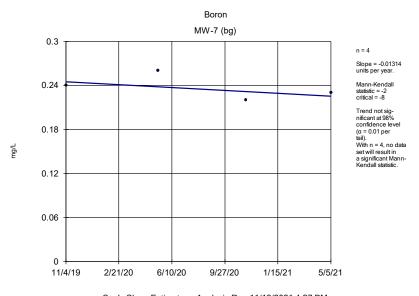


Sen's Slope Estimator Analysis Run 11/18/2021 4:27 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

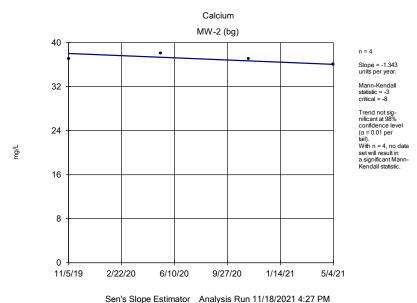
The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

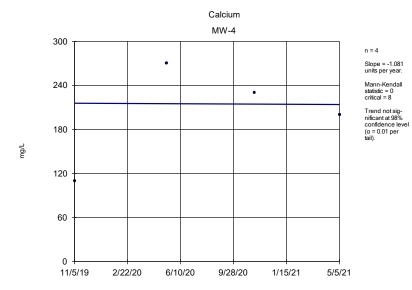
Sen's Slope Estimator Analysis Run 11/18/2021 4:27 PM


The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

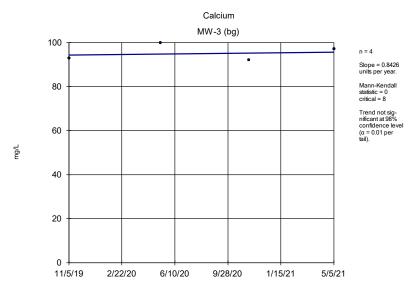
Boron MW-6 0.4 Slope = -0.003336 units per year. Mann-Kendall 0.32 statistic = -1 critical = -8 Trend not sig-nificant at 98% confidence level 0.24 $(\alpha = 0.01 \text{ per})$ With n = 4, no data mg/L set will result in a significant Mann-Kendall statistic. 0.16 0.08 11/4/19 2/21/20 6/9/20 9/27/20 1/14/21 5/4/21

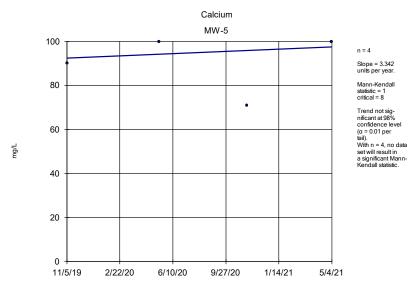
Sen's Slope Estimator Analysis Run 11/18/2021 4:27 PM


The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

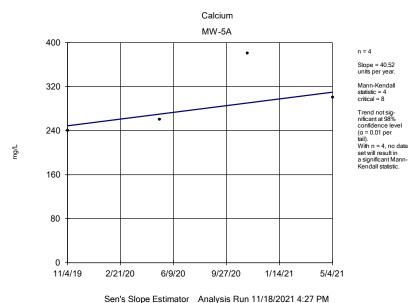

Sen's Slope Estimator Analysis Run 11/18/2021 4:27 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

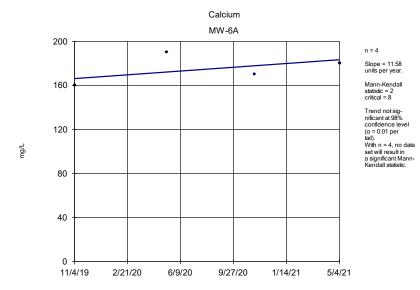

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 11/18/2021 4:27 PM

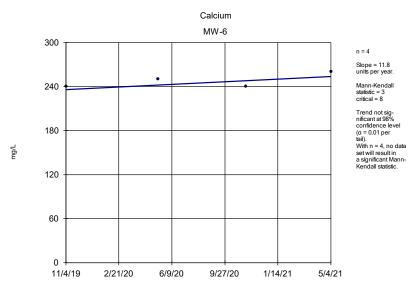
The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

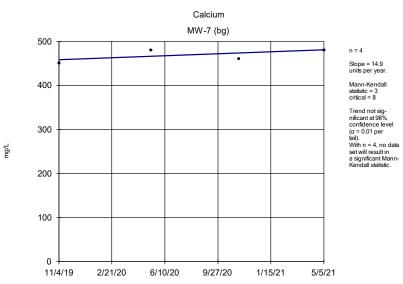

Sen's Slope Estimator Analysis Run 11/18/2021 4:27 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

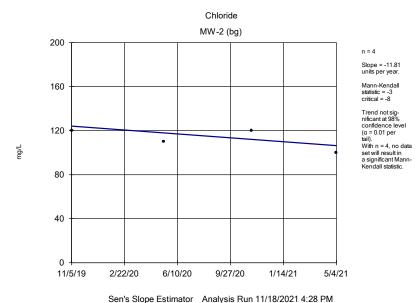

Sen's Slope Estimator Analysis Run 11/18/2021 4:27 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

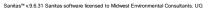

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

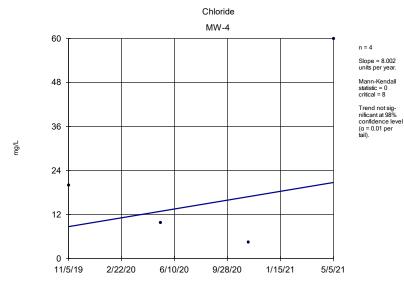

Sen's Slope Estimator Analysis Run 11/18/2021 4:27 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

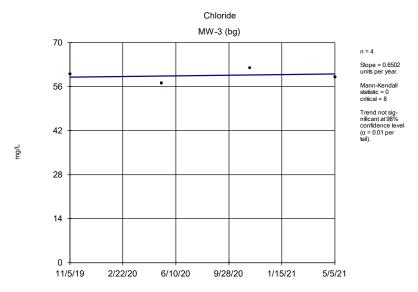

Sen's Slope Estimator Analysis Run 11/18/2021 4:27 PM

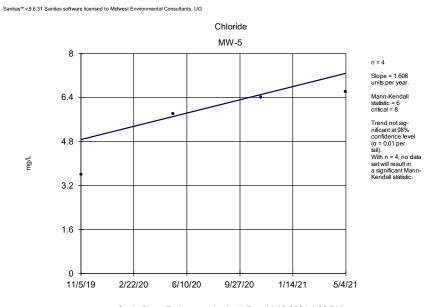
The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background




Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

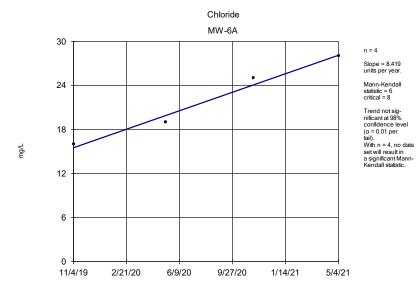

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

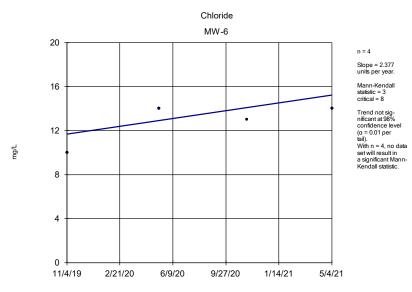

Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

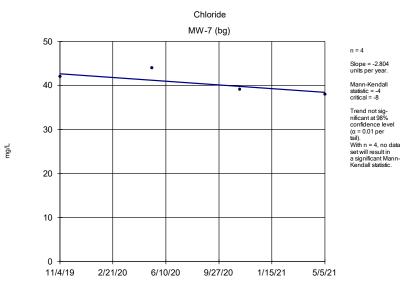


Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

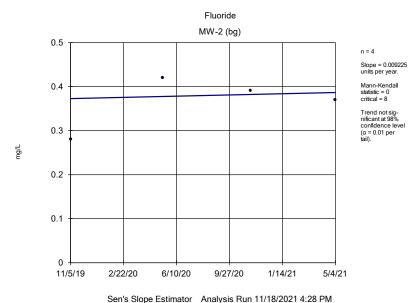
The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background



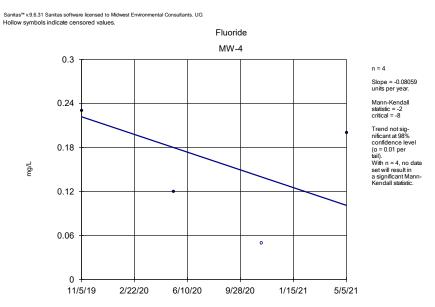
The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

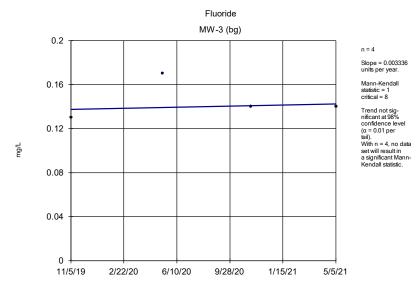

Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background



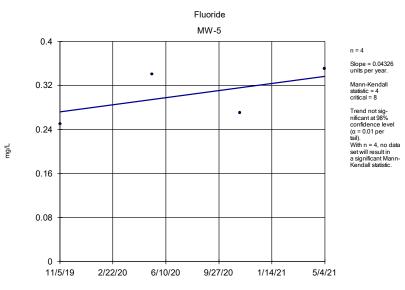
Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background



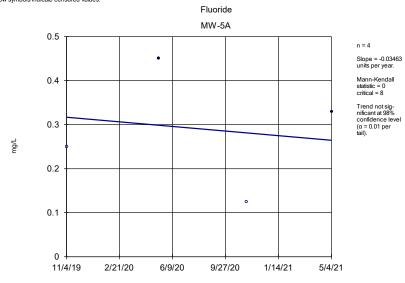
The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM


The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

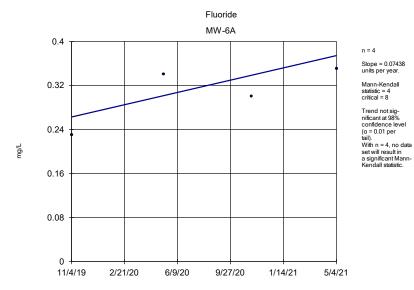
Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background



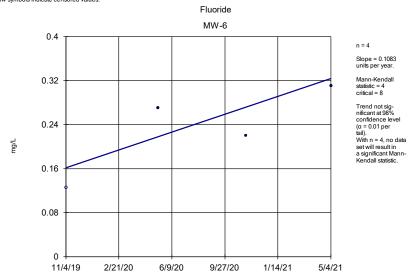
Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background


Sanitas™ v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

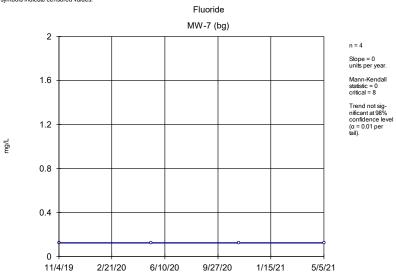
Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background


Sanitas™ v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG

Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

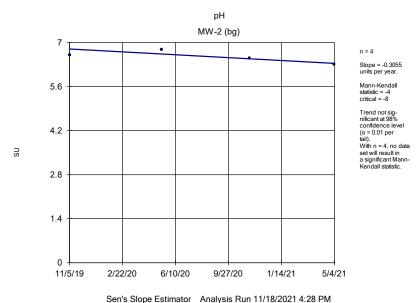
The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background


Sanitas™ v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

Sanitas™ v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.



Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

11/5/19

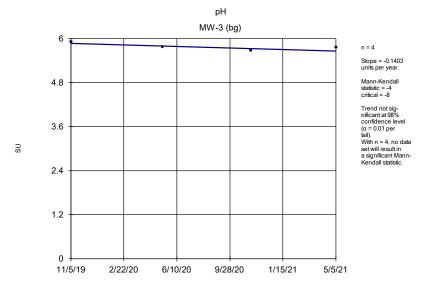
2/22/20

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

рΗ

MW-4 n = 4 Slope = -0.5684 units per year. Mann-Kendall statistic = -2 critical = -8 6.4 Trend not sig-nificant at 98% confidence level 4.8 $(\alpha = 0.01 \text{ per})$ With n = 4, no data SU set will result in a significant Mann-Kendall statistic. 3.2 1.6

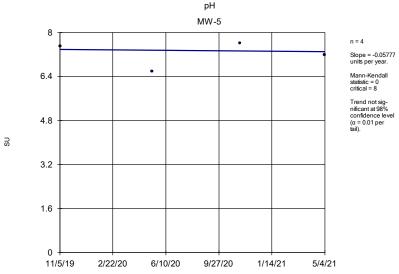
Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM


The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

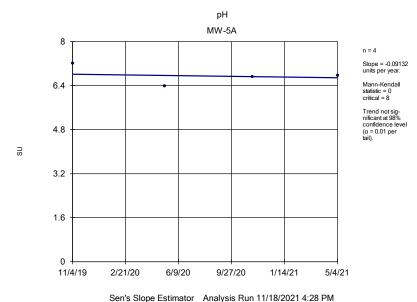
9/28/20

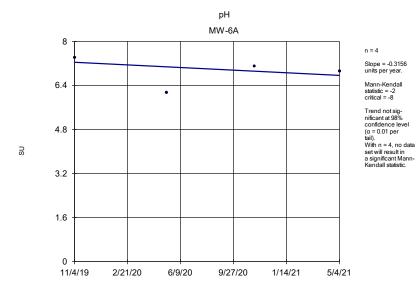
1/15/21

5/5/21

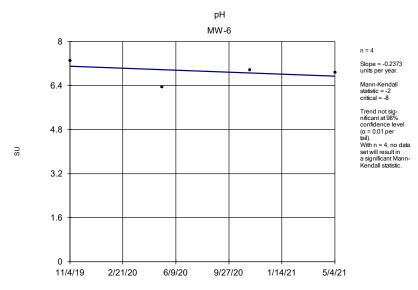

6/10/20

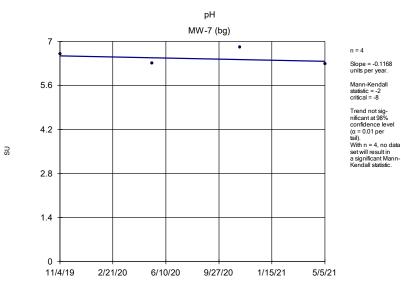
Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM


The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

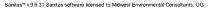

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

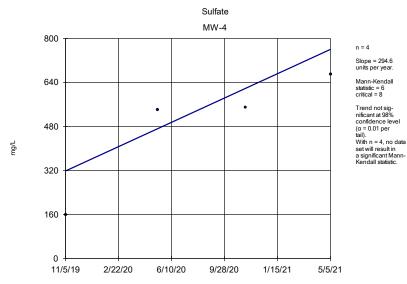

Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

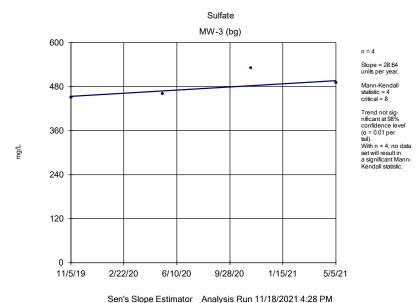
Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

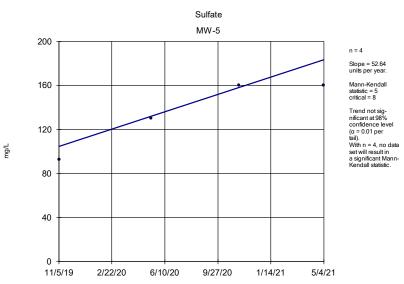
The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background




Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

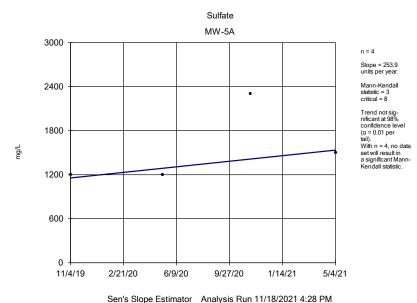
The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background


The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background



Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

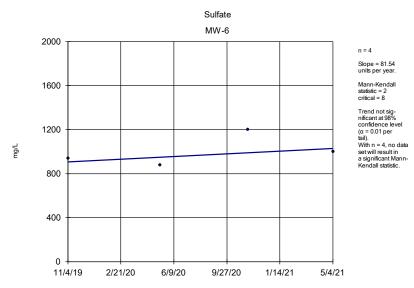
The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

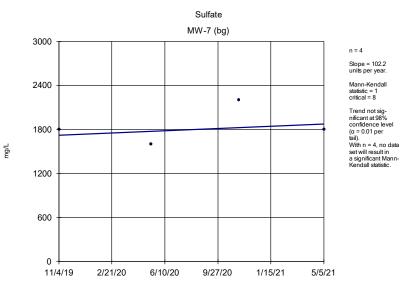


The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

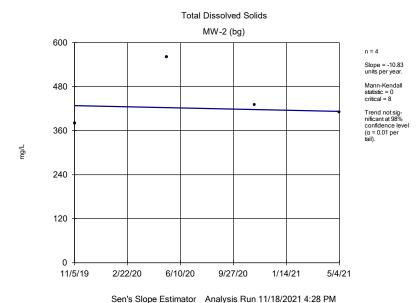
Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

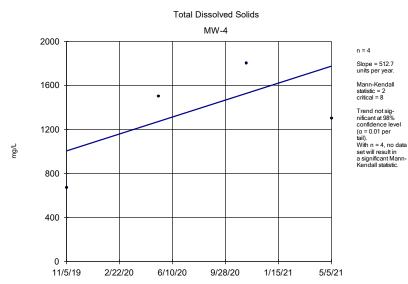

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

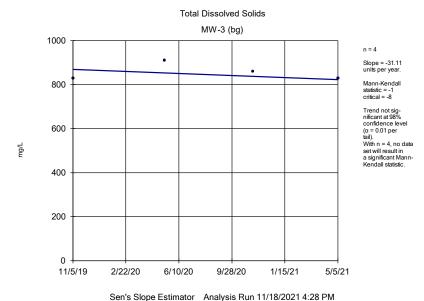
The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

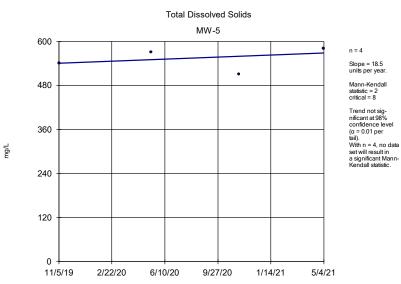

Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

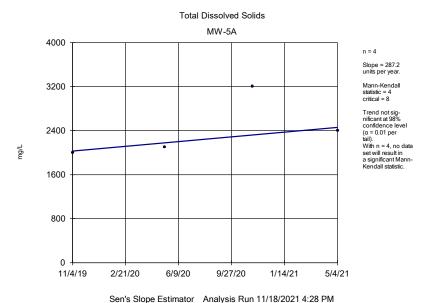
The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background


The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

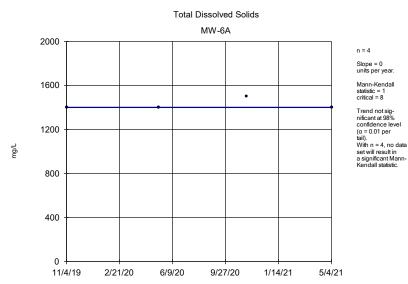


Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

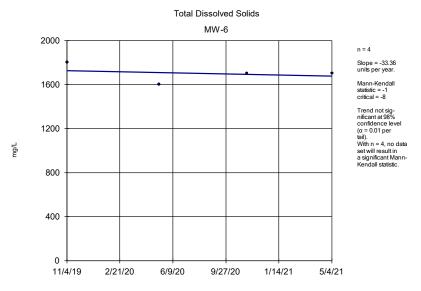


The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

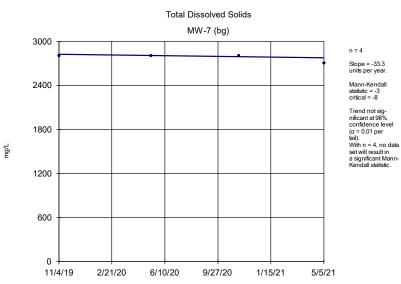


Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background



The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

	The Empire District Client: Mid	west Environme	ntal Consultants	Data: 11-2	1 App 3 Asl	bury ponds	with backg	ound Printed	11/18/2021, 4:2	8 PM	
Constituent	<u>Well</u>	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Boron (mg/L)	MW-2 (bg)	-0.00	-1	-8	No	4	0	n/a	n/a	0.02	NP
Boron (mg/L)	MW-3 (bg)	0	-1	-8	No	4	75	n/a	n/a	0.02	NP
Boron (mg/L)	MW-4	0	0	8	No	4	100	n/a	n/a	0.02	NP
Boron (mg/L)	MW-5	0.03481	4	8	No	4	0	n/a	n/a	0.02	NP
Boron (mg/L)	MW-5A	0.2754	4	8	No	4	0	n/a	n/a	0.02	NP
Boron (mg/L)	MW-6	-0.00	-1	-8	No	4	0	n/a	n/a	0.02	NP
Boron (mg/L)	MW-6A	-0.01648	-3	-8	No	4	0	n/a	n/a	0.02	NP
Boron (mg/L)	MW-7 (bg)	-0.01314	-2	-8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-2 (bg)	-1.343	-3	-8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-3 (bg)	0.8426	0	8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-4	-1.081	0	8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-5	3.342	1	8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-5A	40.52	4	8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-6	11.8	3	8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-6A	11.58	2	8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-7 (bg)	14.9	3	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-2 (bg)	-11.81	-3	-8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-3 (bg)	0.6502	0	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-4	8.002	0	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-5	1.608	6	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-5A	31.62	4	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-6	2.377	3	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-6A	8.419	6	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-7 (bg)	-2.804	-4	-8	No	4	0	n/a	n/a	0.02	NP
, = ,		0.009225	0	8	No	4	0			0.02	NP
Fluoride (mg/L)	MW-2 (bg)	0.009225	1	8	No	4	0	n/a n/a	n/a	0.02	NP
Fluoride (mg/L) Fluoride (mg/L)	MW-3 (bg) MW-4						25		n/a	0.02	
	MW-5	-0.08059	-2	-8 8	No	4 4	0	n/a	n/a		NP NP
Fluoride (mg/L)		0.04326	4		No	4		n/a	n/a	0.02	
Fluoride (mg/L)	MW-5A	-0.03463	0	8	No		50 25	n/a	n/a	0.02	NP NP
Fluoride (mg/L)	MW-6	0.1083	4	8	No	4 4	25 0	n/a	n/a	0.02	NP NP
Fluoride (mg/L)	MW-6A	0.07438	4	8	No			n/a	n/a /-	0.02	
Fluoride (mg/L)	MW-7 (bg)	0	0	8	No	4	100	n/a	n/a	0.02	NP
pH (SU)	MW-2 (bg)	-0.3055	-4	-8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-3 (bg)	-0.1403	-4	-8	No	4 4	0	n/a	n/a	0.02	NP
pH (SU)	MW-4	-0.5684	-2	-8	No	•	0	n/a	n/a	0.02	NP
pH (SU)	MW-5	-0.05777	0	8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-5A	-0.09132	0	8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-6	-0.2373	-2	-8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-6A	-0.3156	-2	-8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-7 (bg)	-0.1168	-2	-8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-2 (bg)	-6.294	-2	-8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-3 (bg)	28.64	4	8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-4	294.6	6	8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-5	52.64	5	8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-5A	253.9	3	8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-6	81.54	2	8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-6A	115.4	4	8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-7 (bg)	102.2	1	8	No	4	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-2 (bg)	-10.83	0	8	No	4	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-3 (bg)	-31.11	-1	-8	No	4	0	n/a	n/a	0.02	NP

Trend Test

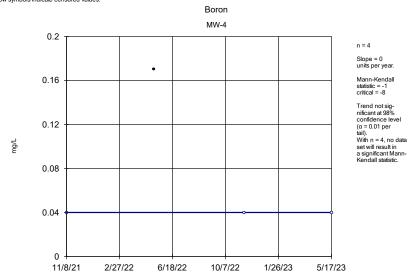
	The Empire District Client: Mic	Data: 11-21 App 3 Asbury ponds with background Printed 11/18/2021, 4:28 PM									
Constituent	<u>Well</u>	Slope	<u>Calc.</u>	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Total Dissolved Solids (mg/L)	MW-4	512.7	2	8	No	4	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-5	18.5	2	8	No	4	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-5A	287.2	4	8	No	4	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-6	-33.36	-1	-8	No	4	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-6A	0	1	8	No	4	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-7 (bg)	-33.3	-3	-8	No	4	0	n/a	n/a	0.02	NP

Sen's Slope Estimator Analysis Run 1/24/2024 6:13 PM

10/7/22

1/26/23

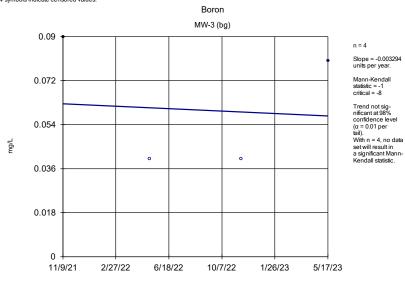
5/17/23


6/18/22

The Empire District Client: Midwest Environmental Consultants Data: 11-23 App 3 Asbury ponds with background

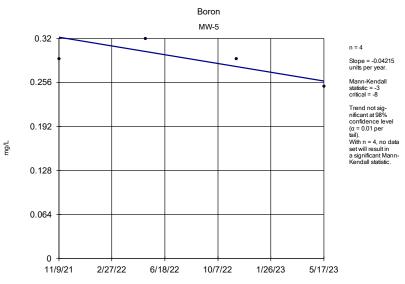
Sanitas™ v.10.0.15 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

11/8/21

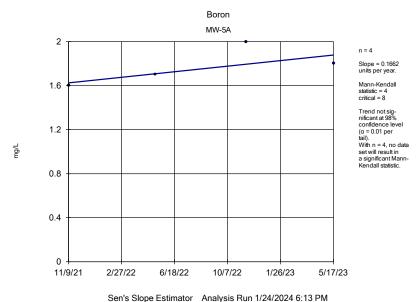

2/27/22

Sen's Slope Estimator Analysis Run 1/24/2024 6:13 PM

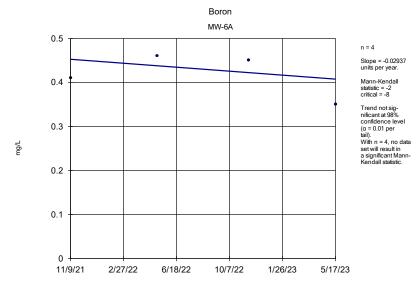
The Empire District Client: Midwest Environmental Consultants Data: 11-23 App 3 Asbury ponds with background


Sanitas™ v.10.0.15 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

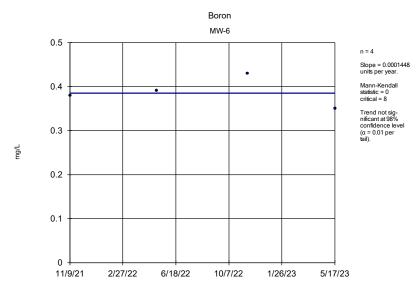
Sen's Slope Estimator Analysis Run 1/24/2024 6:13 PM

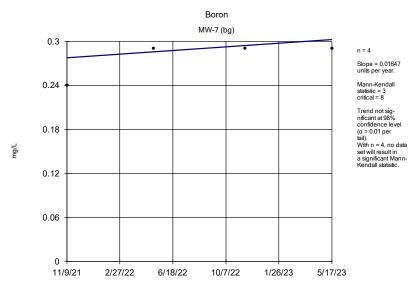

The Empire District Client: Midwest Environmental Consultants Data: 11-23 App 3 Asbury ponds with background

$Sanitas^{\text{\tiny{M}}}\,v.10.0.15\,\,Sanitas\,software\,\,licensed\,\,to\,\,Midwest\,Environmental\,\,Consultants.\,\,UG$

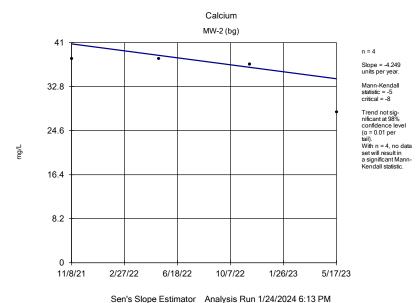

Sen's Slope Estimator Analysis Run 1/24/2024 6:13 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-23 App 3 Asbury ponds with background

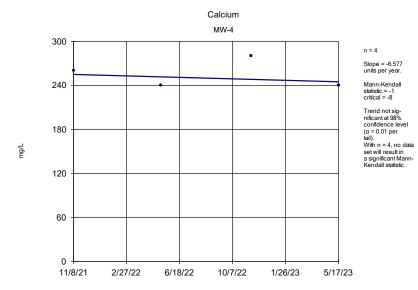

The Empire District Client: Midwest Environmental Consultants Data: 11-23 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 1/24/2024 6:13 PM

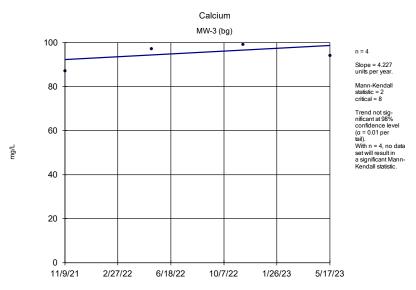
The Empire District Client: Midwest Environmental Consultants Data: 11-23 App 3 Asbury ponds with background

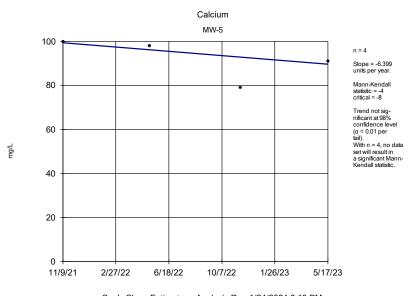

Sen's Slope Estimator Analysis Run 1/24/2024 6:13 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-23 App 3 Asbury ponds with background

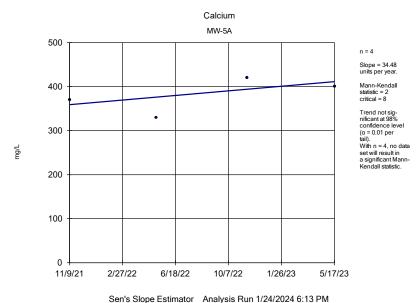

Sen's Slope Estimator Analysis Run 1/24/2024 6:13 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-23 App 3 Asbury ponds with background

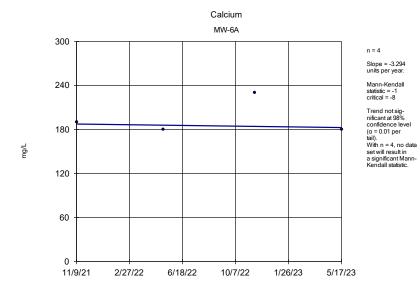

The Empire District Client: Midwest Environmental Consultants Data: 11-23 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 1/24/2024 6:13 PM

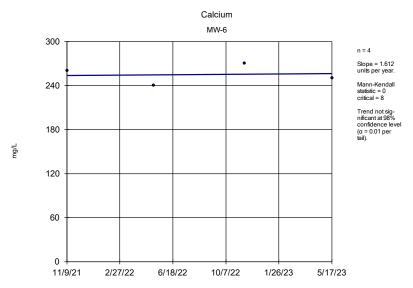
The Empire District Client: Midwest Environmental Consultants Data: 11-23 App 3 Asbury ponds with background

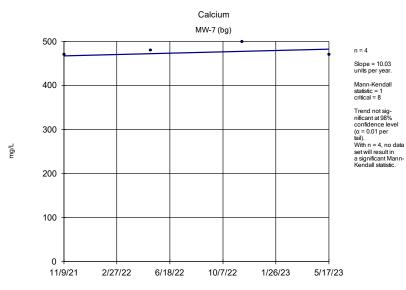

Sen's Slope Estimator Analysis Run 1/24/2024 6:13 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-23 App 3 Asbury ponds with background

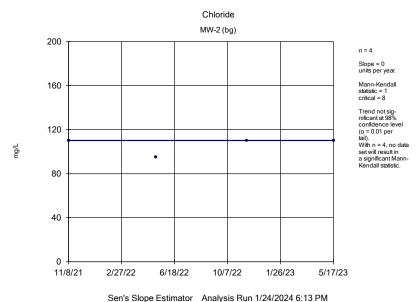

Sen's Slope Estimator Analysis Run 1/24/2024 6:13 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-23 App 3 Asbury ponds with background

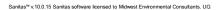

The Empire District Client: Midwest Environmental Consultants Data: 11-23 App 3 Asbury ponds with background

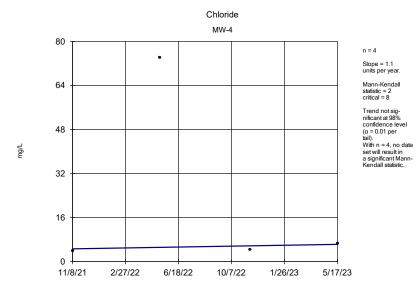

Sen's Slope Estimator Analysis Run 1/24/2024 6:13 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-23 App 3 Asbury ponds with background

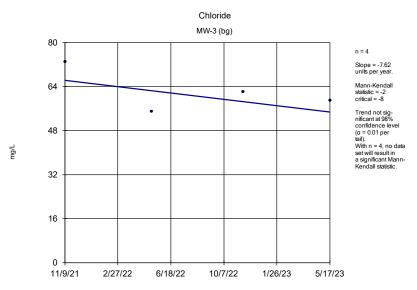

Sen's Slope Estimator Analysis Run 1/24/2024 6:13 PM

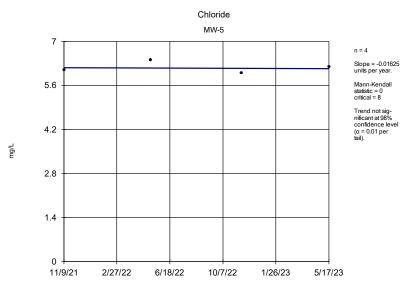
The Empire District Client: Midwest Environmental Consultants Data: 11-23 App 3 Asbury ponds with background



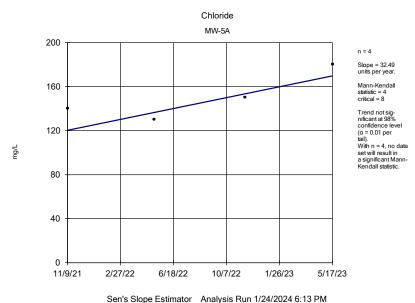

Sen's Slope Estimator Analysis Run 1/24/2024 6:13 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-23 App 3 Asbury ponds with background

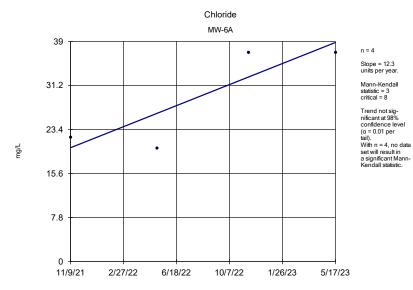

The Empire District Client: Midwest Environmental Consultants Data: 11-23 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 1/24/2024 6:13 PM

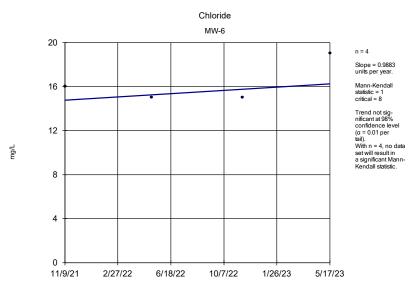
The Empire District Client: Midwest Environmental Consultants Data: 11-23 App 3 Asbury ponds with background

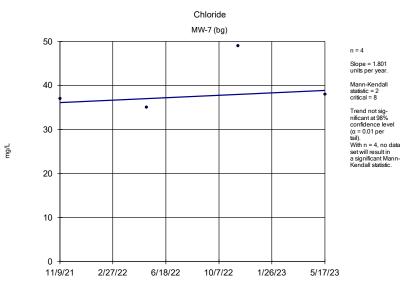

Sen's Slope Estimator Analysis Run 1/24/2024 6:13 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-23 App 3 Asbury ponds with background

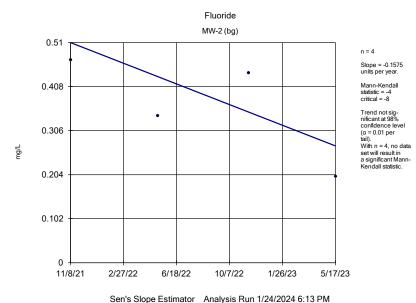

Sen's Slope Estimator Analysis Run 1/24/2024 6:13 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-23 App 3 Asbury ponds with background

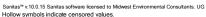

The Empire District Client: Midwest Environmental Consultants Data: 11-23 App 3 Asbury ponds with background

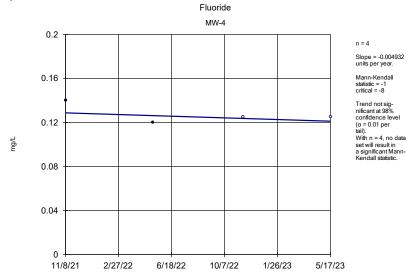

Sen's Slope Estimator Analysis Run 1/24/2024 6:13 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-23 App 3 Asbury ponds with background

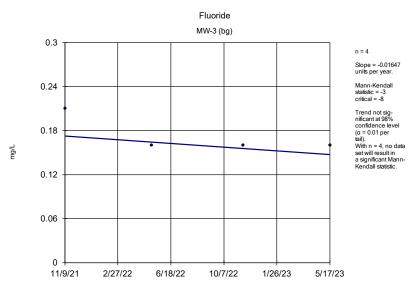

Sen's Slope Estimator Analysis Run 1/24/2024 6:13 PM

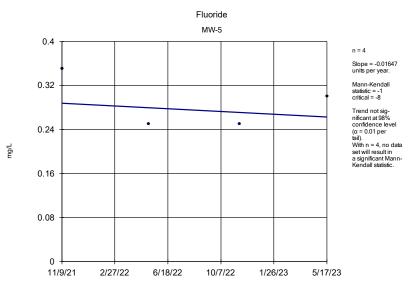
The Empire District Client: Midwest Environmental Consultants Data: 11-23 App 3 Asbury ponds with background




Sen's Slope Estimator Analysis Run 1/24/2024 6:13 PM

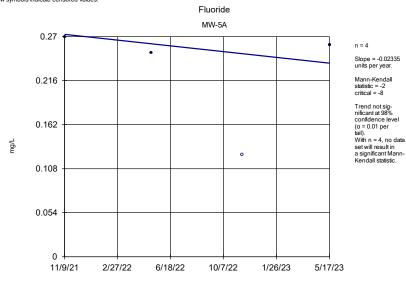
The Empire District Client: Midwest Environmental Consultants Data: 11-23 App 3 Asbury ponds with background


The Empire District Client: Midwest Environmental Consultants Data: 11-23 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 1/24/2024 6:13 PM

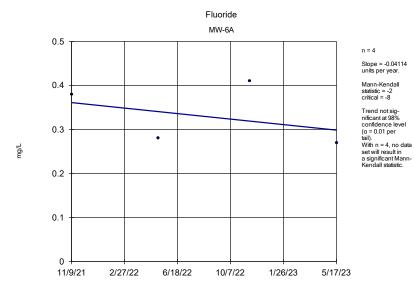
The Empire District Client: Midwest Environmental Consultants Data: 11-23 App 3 Asbury ponds with background

Sen's Slope Estimator Analysis Run 1/24/2024 6:13 PM


The Empire District Client: Midwest Environmental Consultants Data: 11-23 App 3 Asbury ponds with background

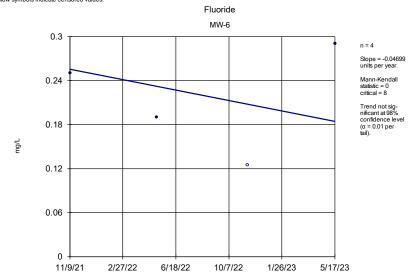
Sen's Slope Estimator Analysis Run 1/24/2024 6:13 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-23 App 3 Asbury ponds with background


Sanitas™ v.10.0.15 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

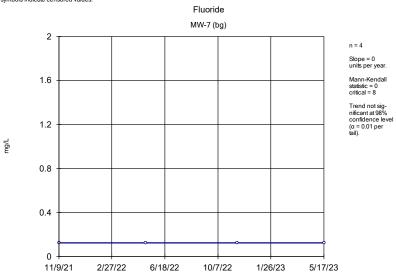
Sen's Slope Estimator Analysis Run 1/24/2024 6:13 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-23 App 3 Asbury ponds with background

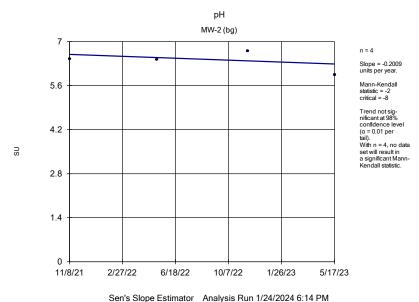

Sanitas™ v.10.0.15 Sanitas software licensed to Midwest Environmental Consultants. UG

Sen's Slope Estimator Analysis Run 1/24/2024 6:13 PM

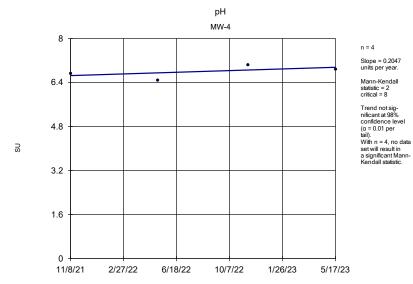
The Empire District Client: Midwest Environmental Consultants Data: 11-23 App 3 Asbury ponds with background


Sanitas™ v.10.0.15 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

Sen's Slope Estimator Analysis Run 1/24/2024 6:13 PM

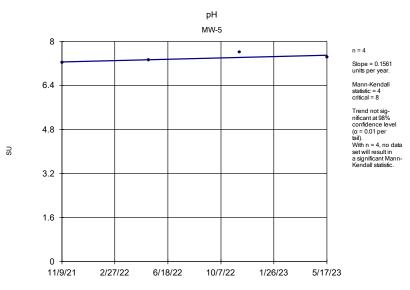

The Empire District Client: Midwest Environmental Consultants Data: 11-23 App 3 Asbury ponds with background

Sanitas™ v.10.0.15 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.


Sen's Slope Estimator Analysis Run 1/24/2024 6:13 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-23 App 3 Asbury ponds with background

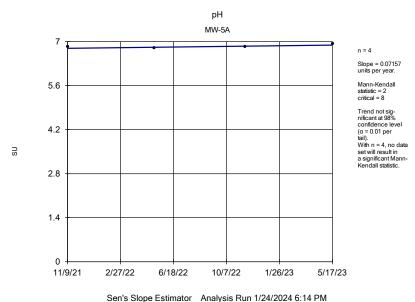

The Empire District Client: Midwest Environmental Consultants Data: 11-23 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 1/24/2024 6:14 PM

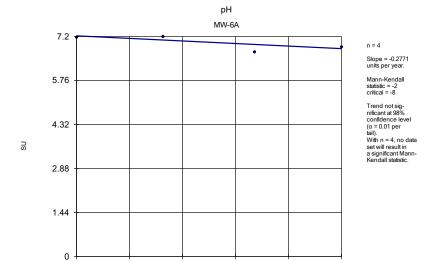
The Empire District Client: Midwest Environmental Consultants Data: 11-23 App 3 Asbury ponds with background

Sen's Slope Estimator Analysis Run 1/24/2024 6:14 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-23 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 1/24/2024 6:14 PM

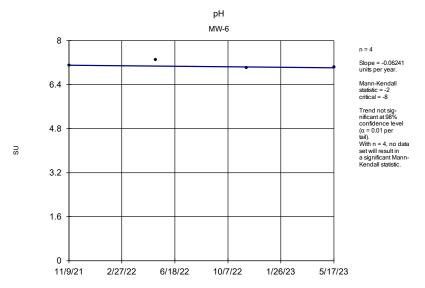
The Empire District Client: Midwest Environmental Consultants Data: 11-23 App 3 Asbury ponds with background


11/9/21

2/27/22

6/18/22

The Empire District Client: Midwest Environmental Consultants Data: 11-23 App 3 Asbury ponds with background

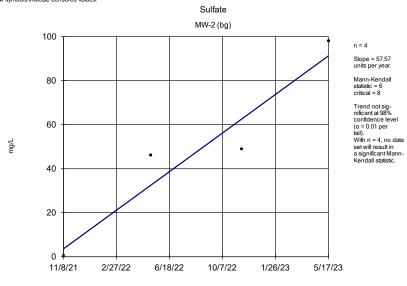

Sen's Slope Estimator Analysis Run 1/24/2024 6:14 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-23 App 3 Asbury ponds with background

10/7/22

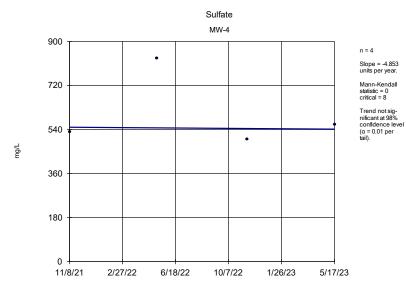
1/26/23

5/17/23


Sen's Slope Estimator Analysis Run 1/24/2024 6:14 PM

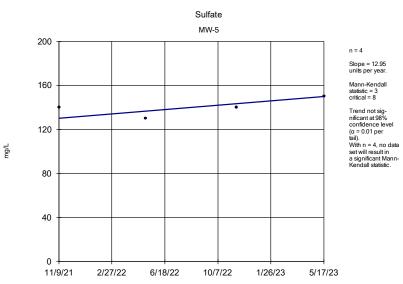
The Empire District Client: Midwest Environmental Consultants Data: 11-23 App 3 Asbury ponds with background

Sen's Slope Estimator Analysis Run 1/24/2024 6:14 PM

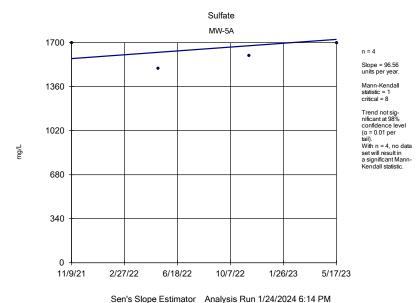

The Empire District Client: Midwest Environmental Consultants Data: 11-23 App 3 Asbury ponds with background

Sen's Slope Estimator Analysis Run 1/24/2024 6:14 PM

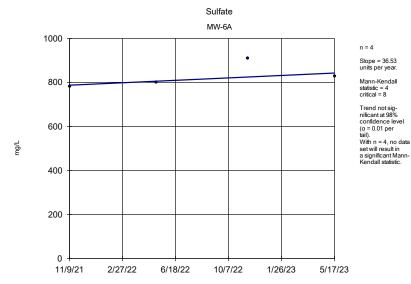

The Empire District Client: Midwest Environmental Consultants Data: 11-23 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 1/24/2024 6:14 PM

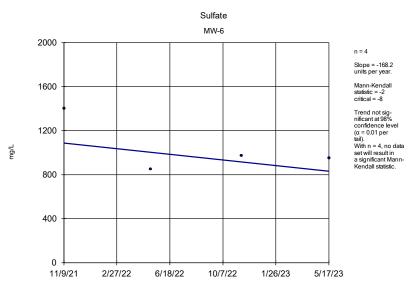
The Empire District Client: Midwest Environmental Consultants Data: 11-23 App 3 Asbury ponds with background

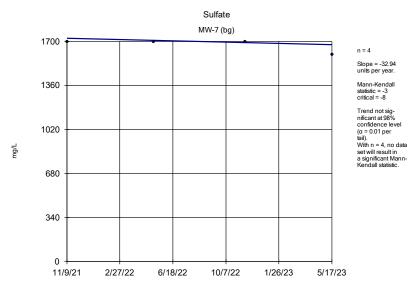

Sen's Slope Estimator Analysis Run 1/24/2024 6:14 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-23 App 3 Asbury ponds with background

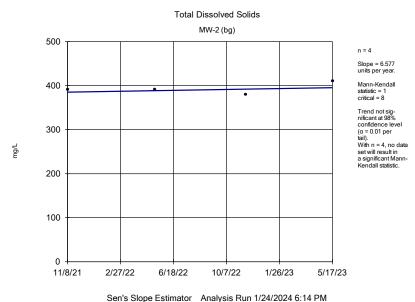

Sen's Slope Estimator Analysis Run 1/24/2024 6:14 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-23 App 3 Asbury ponds with background

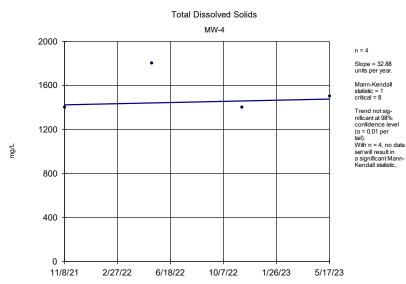

The Empire District Client: Midwest Environmental Consultants Data: 11-23 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 1/24/2024 6:14 PM

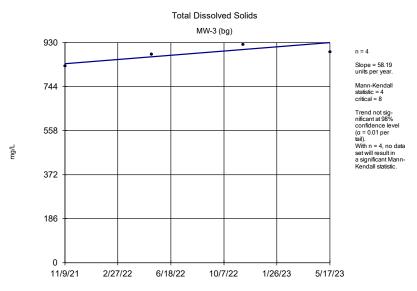
The Empire District Client: Midwest Environmental Consultants Data: 11-23 App 3 Asbury ponds with background

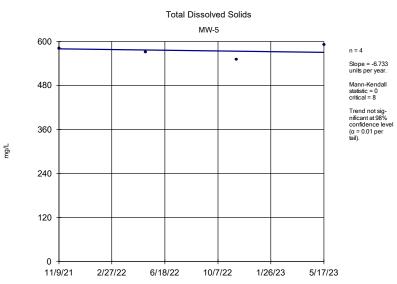

Sen's Slope Estimator Analysis Run 1/24/2024 6:14 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-23 App 3 Asbury ponds with background

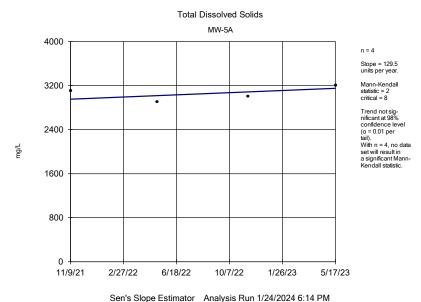

Sen's Slope Estimator Analysis Run 1/24/2024 6:14 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-23 App 3 Asbury ponds with background

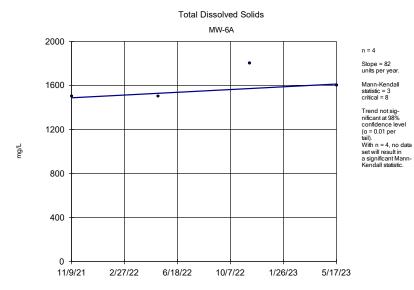

The Empire District Client: Midwest Environmental Consultants Data: 11-23 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 1/24/2024 6:14 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-23 App 3 Asbury ponds with background

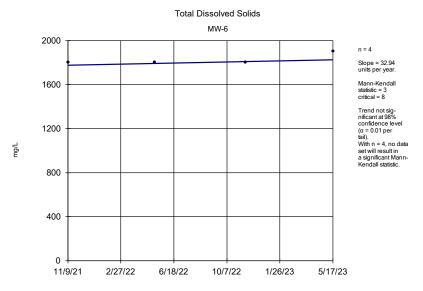

Sen's Slope Estimator Analysis Run 1/24/2024 6:14 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-23 App 3 Asbury ponds with background

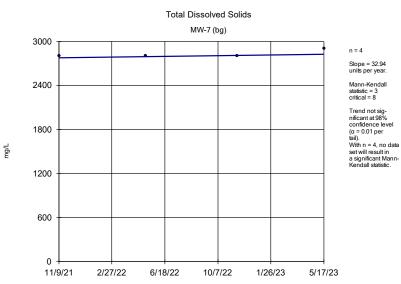


Sen's Slope Estimator Analysis Run 1/24/2024 6:14 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-23 App 3 Asbury ponds with background



The Empire District Client: Midwest Environmental Consultants Data: 11-23 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 1/24/2024 6:14 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-23 App 3 Asbury ponds with background

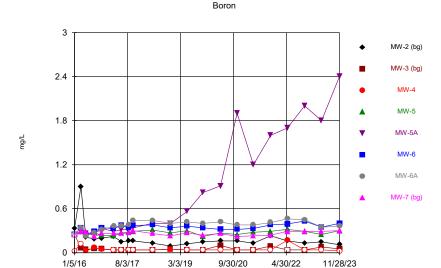
Sen's Slope Estimator Analysis Run 1/24/2024 6:14 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-23 App 3 Asbury ponds with background

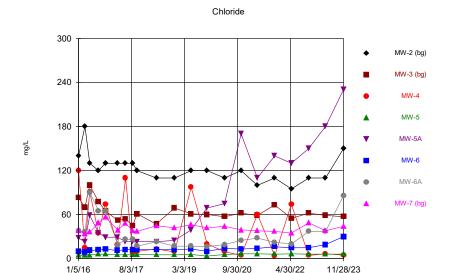
Sen's Slope Estimator Analysis Run 1/24/2024 6:14 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-23 App 3 Asbury ponds with background

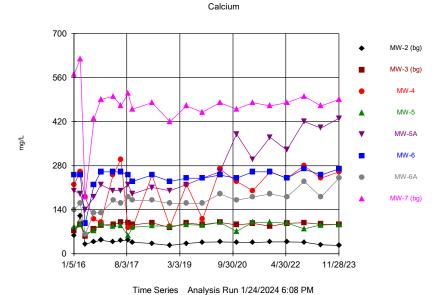
	The Empire District Client: M	idwest Environme	ental Consultants	s Data: 11-2	23 App 3 As	sbury pond	ds with backo	ground Printe	ed 1/24/2024, 6:	14 PM	
Constituent	<u>Well</u>	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Boron (mg/L)	MW-2 (bg)	-0.05512	-4	-8	No	4	0	n/a	n/a	0.02	NP
Boron (mg/L)	MW-3 (bg)	-0.00	-1	-8	No	4	50	n/a	n/a	0.02	NP
Boron (mg/L)	MW-4	0	-1	-8	No	4	75	n/a	n/a	0.02	NP
Boron (mg/L)	MW-5	-0.04215	-3	-8	No	4	0	n/a	n/a	0.02	NP
Boron (mg/L)	MW-5A	0.1662	4	8	No	4	0	n/a	n/a	0.02	NP
Boron (mg/L)	MW-6	0.000	0	8	No	4	0	n/a	n/a	0.02	NP
Boron (mg/L)	MW-6A	-0.02937	-2	-8	No	4	0	n/a	n/a	0.02	NP
Boron (mg/L)	MW-7 (bg)	0.01647	3	8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-2 (bg)	-4.249	-5	-8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-3 (bg)	4.227	2	8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-4	-6.577	-1	-8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-5	-6.399	-4	-8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-5A	34.48	2	8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-6	1.612	0	8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-6A	-3.294	-1	-8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-7 (bg)	10.03	1	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-2 (bg)	0	1	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-3 (bg)	-7.62	-2	-8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-4	1.1	2	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-5	-0.01625	0	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-5A	32.49	4	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-6	0.9883	1	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-6A	12.3	3	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-7 (bg)	1.801	2	8	No	4	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-2 (bg)	-0.1575	-4	-8	No	4	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-2 (bg)	-0.1373	-3	-8	No	4	0	n/a n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-4	-0.00	-3 -1	-8	No	4	50	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-5	-0.00	-1 -1	-8	No	4	0	n/a n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-5A	-0.01047	-1 -2	-8	No	4	25	n/a n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-6	-0.02555	0	8	No	4	25	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-6A	-0.04099	-2	-8	No	4	0	n/a n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-7 (bg)	0	0	8	No	4	100	n/a	n/a	0.02	NP
pH (SU)	, =:	-0.2009	-2	-8	No	4	0			0.02	NP NP
	MW-2 (bg)					4		n/a	n/a		
pH (SU) pH (SU)	MW-3 (bg) MW-4	-0.06588 0.2047	-1 2	-8 8	No No	4	0 0	n/a n/a	n/a n/a	0.02 0.02	NP NP
pH (SU)				8		4	0				NP
рн (SU) pH (SU)	MW-5	0.1561	4 2	8	No No	4	0	n/a	n/a	0.02	NP NP
	MW-5A MW-6	0.07157	-2	-8		4	0	n/a	n/a	0.02 0.02	NP
pH (SU)	MW-6A	-0.06241 -0.2771	-2 -2		No		0	n/a	n/a	0.02	NP
pH (SU)				-8	No	4		n/a	n/a		
pH (SU)	MW-7 (bg)	0.04927	4	8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-2 (bg)	57.57	6	8	No	4	25	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-3 (bg)	44.29	4	8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-4	-4.853	0	8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-5	12.95	3	8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-5A	96.56	1	8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-6	-168.2	-2	-8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-6A	36.53	4	8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-7 (bg)	-32.94	-3	-8	No	4	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-2 (bg)	6.577	1	8	No	4	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-3 (bg)	58.19	4	8	No	4	0	n/a	n/a	0.02	NP


Trend Test

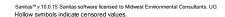
	The Empire District Client: Midwest Environmental Consultants Data: 11-23 App 3 Asbury ponds with background Printed 1/24/2024, 6:14 PM										
Constituent	Well	<u>Slope</u>	<u>Calc.</u>	<u>Critical</u>	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Total Dissolved Solids (mg/L)	MW-4	32.88	1	8	No	4	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-5	-6.733	0	8	No	4	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-5A	129.5	2	8	No	4	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-6	32.94	3	8	No	4	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-6A	82	3	8	No	4	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-7 (bg)	32.94	3	8	No	4	0	n/a	n/a	0.02	NP

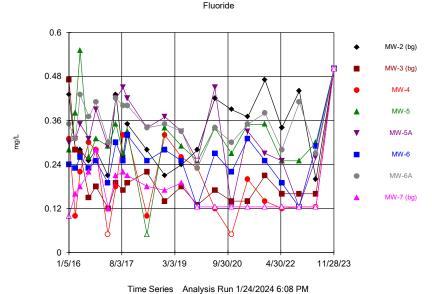

Sanitas[™] Output – Sampling Event

Time Series Analysis

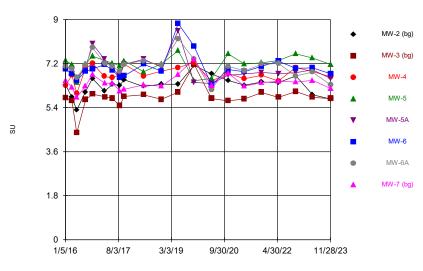

Time Series Analysis Run 1/24/2024 6:08 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-23 App 3 Asbury ponds with background

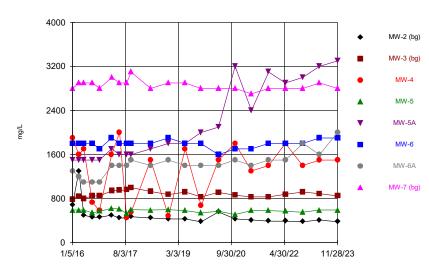



Time Series Analysis Run 1/24/2024 6:08 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-23 App 3 Asbury ponds with background


The Empire District Client: Midwest Environmental Consultants Data: 11-23 App 3 Asbury ponds with background

The Empire District Client: Midwest Environmental Consultants Data: 11-23 App 3 Asbury ponds with background

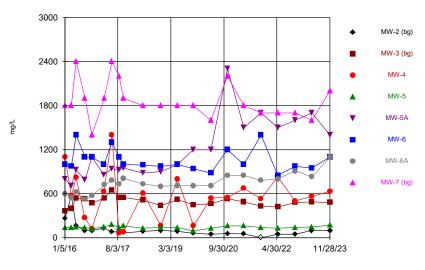


Time Series Analysis Run 1/24/2024 6:08 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-23 App 3 Asbury ponds with background

$Sanitas^{\text{\tiny TM}} \text{ v.} 10.0.15 \text{ Sanitas software licensed to Midwest Environmental Consultants. } \text{UG}$

Total Dissolved Solids



Time Series Analysis Run 1/24/2024 6:08 PM

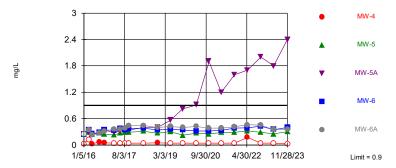
The Empire District Client: Midwest Environmental Consultants Data: 11-23 App 3 Asbury ponds with background

Sanitas™ v.10.0.15 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

Sulfate

Time Series Analysis Run 1/24/2024 6:08 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-23 App 3 Asbury ponds with background

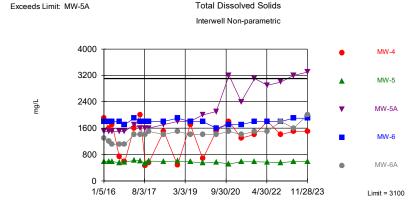


Sanitas[™] Output – Sampling Event Prediction Limits

Hollow symbols indicate censored values.

Exceeds Limit: MW-5A Boron

Interwell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 63 background values. 20.63% NDs. Annual perconstituent alpha = 0.002904. Individual comparison alpha = 0.004845 (1 of 2). Comparing 5 points to limit. Seasonality was not detected with 95% confidence.

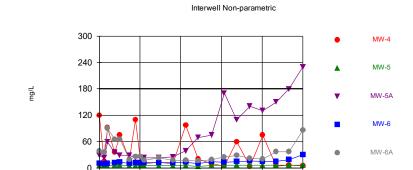
Prediction Limit Analysis Run 1/24/2024 6:17 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-23 App 3 Asbury ponds with background

Sanitas™ v.10.0.15 Sanitas software licensed to Midwest Environmental Consultants. UG

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 63 background values. Annual per-constituent alpha = 0.002904. Individual comparison alpha = 0.0004845 (1 of 2). Comparing 5 points to limit. Seasonality was not detected with 95% confidence.

Prediction Limit Analysis Run 1/24/2024 6:17 PM


The Empire District Client: Midwest Environmental Consultants Data: 11-23 App 3 Asbury ponds with background

Sanitas™ v.10.0.15 Sanitas software licensed to Midwest Environmental Consultants. UG

1/5/16

8/3/17

Exceeds Limit: MW-5A

Chloride

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 63 background values. Annual per-constituent alpha = 0.002904. Individual comparison alpha = 0.0004845 (1 of 2). Comparing 5 points to limit. Seasonality was not detected with 95% confidence.

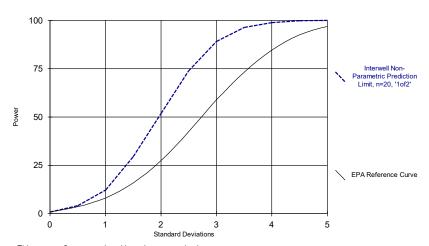
3/3/19 9/30/20 4/30/22 11/28/23

Limit = 180

Prediction Limit Analysis Run 1/24/2024 6:17 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-23 App 3 Asbury ponds with background

Prediction Limit


	The Empire District	t Client: Midwes	st Environmental C	Consultants	Data: 11-23 App	p 3 Asb	ury pond	ds with back	ground Printed 1	24/2024, 6:2	5 PM
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig.	Bg N	%NDs	Transform	<u>Alpha</u>	Method
Boron (mg/L)	MW-4	0.9	n/a	11/28/2023	0.025ND	No	63	20.63	n/a	0.000	NP Inter (normality)
Boron (mg/L)	MW-5	0.9	n/a	11/28/2023	0.3	No	63	20.63	n/a	0.000	NP Inter (normality)
Boron (mg/L)	MW-5A	0.9	n/a	11/28/2023	2.4	Yes	63	20.63	n/a	0.000	NP Inter (normality)
Boron (mg/L)	MW-6	0.9	n/a	11/28/2023	0.4	No	63	20.63	n/a	0.000	NP Inter (normality)
Boron (mg/L)	MW-6A	0.9	n/a	11/28/2023	0.36	No	63	20.63	n/a	0.000	NP Inter (normality)
Calcium (mg/L)	MW-4	620	n/a	11/28/2023	260	No	63	0	n/a	0.000	NP Inter (normality)
Calcium (mg/L)	MW-5	620	n/a	11/28/2023	93	No	63	0	n/a	0.000	NP Inter (normality)
Calcium (mg/L)	MW-5A	620	n/a	11/28/2023	430	No	63	0	n/a	0.000	NP Inter (normality)
Calcium (mg/L)	MW-6	620	n/a	11/28/2023	270	No	63	0	n/a	0.000	NP Inter (normality)
Calcium (mg/L)	MW-6A	620	n/a	11/28/2023	240	No	63	0	n/a	0.000	NP Inter (normality)
Chloride (mg/L)	MW-4	180	n/a	11/28/2023	4.6	No	63	0	n/a	0.000	NP Inter (normality)
Chloride (mg/L)	MW-5	180	n/a	11/28/2023	6	No	63	0	n/a	0.000	NP Inter (normality)
Chloride (mg/L)	MW-5A	180	n/a	11/28/2023	230	Yes	63	0	n/a	0.000	NP Inter (normality)
Chloride (mg/L)	MW-6	180	n/a	11/28/2023	30	No	63	0	n/a	0.000	NP Inter (normality)
Chloride (mg/L)	MW-6A	180	n/a	11/28/2023	86	No	63	0	n/a	0.000	NP Inter (normality)
Fluoride (mg/L)	MW-4	0.4	n/a	11/28/2023	0.5ND	No	63	19.05	ln(x)	0.000	Param Inter 1 of 2
Fluoride (mg/L)	MW-5	0.4	n/a	11/28/2023	0.5ND	No	63	19.05	ln(x)	0.000	Param Inter 1 of 2
Fluoride (mg/L)	MW-5A	0.4	n/a	11/28/2023	0.5ND	No	63	19.05	ln(x)	0.000	Param Inter 1 of 2
Fluoride (mg/L)	MW-6	0.4	n/a	11/28/2023	0.5ND	No	63	19.05	ln(x)	0.000	Param Inter 1 of 2
Fluoride (mg/L)	MW-6A	0.4	n/a	11/28/2023	0.5ND	No	63	19.05	ln(x)	0.000	Param Inter 1 of 2
pH (SU)	MW-4	7.39	4.37	11/28/2023	6.65	No	63	0	n/a	0.000969	NP Inter (normality)
pH (SU)	MW-5	7.39	4.37	11/28/2023	7.16	No	63	0	n/a	0.000969	NP Inter (normality)
pH (SU)	MW-5A	7.39	4.37	11/28/2023	6.59	No	63	0	n/a	0.000969	NP Inter (normality)
pH (SU)	MW-6	7.39	4.37	11/28/2023	6.79	No	63	0	n/a	0.000969	NP Inter (normality)
pH (SU)	MW-6A	7.39	4.37	11/28/2023	6.33	No	63	0	n/a	0.000969	NP Inter (normality)
Sulfate (mg/L)	MW-4	2400	n/a	11/28/2023	630	No	63	1.587	n/a	0.000	NP Inter (normality)
Sulfate (mg/L)	MW-5	2400	n/a	11/28/2023	170	No	63	1.587	n/a	0.000	NP Inter (normality)
Sulfate (mg/L)	MW-5A	2400	n/a	11/28/2023	1400	No	63	1.587	n/a	0.000	NP Inter (normality)
Sulfate (mg/L)	MW-6	2400	n/a	11/28/2023	1100	No	63	1.587	n/a	0.000	NP Inter (normality)
Sulfate (mg/L)	MW-6A	2400	n/a	11/28/2023	1100	No	63	1.587	n/a	0.000	NP Inter (normality)
Total Dissolved Solids (mg/L)	MW-4	3100	n/a	11/28/2023	1500	No	63	0	n/a	0.000	NP Inter (normality)
Total Dissolved Solids (mg/L)	MW-5	3100	n/a	11/28/2023	590	No	63	0	n/a	0.000	NP Inter (normality)
Total Dissolved Solids (mg/L)	MW-5A	3100	n/a	11/28/2023	3300	Yes	63	0	n/a	0.000	NP Inter (normality)
Total Dissolved Solids (mg/L)	MW-6	3100	n/a	11/28/2023	1900	No	63	0	n/a	0.000	NP Inter (normality)
Total Dissolved Solids (mg/L)	MW-6A	3100	n/a	11/28/2023	2000	No	63	0	n/a	0.000	NP Inter (normality)

Sanitas[™] Output – Sampling Event

Power Curve

This report reflects annual total based on two evaluations per year.

Analysis Run 1/24/2024 6:29 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-23 App 3 Asbury ponds with background